
Encoded Gateway API

Developer Guide

Title Encoded Gateway API - Developer Guide

Document No ENCODED/MSC/19-091

Classification PUBLIC

Revision 3.2

Date 2023-10-03

Author Adam Bromage-Hughes

Approver Frank Pocklington

INTERNAL USE ONLY

Encoded Gateway API
Developer Guide

Contents

Introduction.. 4
API Specification Documentation...4
Changelogs...4
URLs..5
Authentication.. 6

Authentication for Hosted Payment Fields... 7
Resource References.. 9
Merchant Accounts..10

Payment Orchestration...10
Explicit Merchant Account Selection.. 10

Orders..11
Transactions... 12
Authorisation & Capture..14

Voiding an Authorisation...16
Partial Capture... 16
Excessive Capture... 17

Customers.. 18
Adding New Customers..18
Updating Existing Customers... 19
Deleting Existing Customers.. 21
Custom Attributes...21

Tokens...23
Retrieving Tokens for a Customer.. 24
Retrieving all Tokens.. 25
Making a Token Payment... 25

Alternative Payment Methods (APMs)... 27
Apple Pay... 27

Set up Apple Pay..27
Checkout Implementation...30
Using the Apple Pay API.. 30
Receiving the Payment Token from Apple Pay.. 31
Submitting the Payment... 34

Google Pay™... 36
Checkout Implementation...36
Using the Google Pay API..36
Receiving the Payment Token from Google Pay.. 37
Submitting the Payment... 38

PUBLIC Page 2 of 74

Encoded Gateway API
Developer Guide

EMV 3-D Secure (3DS2)... 40
Initiate 3D Secure Transaction... 40
Receive Challenge... 41
Redirect to ACS..42
Process ACS Response...43
Send Challenge Response...43
Multiple Challenges.. 44

Hosted Payment Pages... 45
Create an Order... 45

Tokenisation..45
Example..45

Displaying the Hosted Payment Page..48
Handling The Response...48

Token Management.. 49
Hosted Payment Fields..50

Generating a Payment Session..50
Generate a Session Limited JWT...52
Generate the Hosted Payment Fields.. 52
Interact with the Hosted Payment Fields..53
Sync Hosted Payment Fields with the Payment Session...54
Submitting the Payment... 54
Styling...56

Notifications... 60
Transactions...60

Address Verification Service...62
Response Codes.. 63
Test Cards...66
Appendix 1 - Hosted Payment Fields Events.. 67
Version History...74

PUBLIC Page 3 of 74

Encoded Gateway API
Developer Guide

Introduction

The purpose of this document is to be read in conjunction with the Encoded Gateway API
Specification Document, to provide additional guidance and implementation notes for
implementers.

Any major changes to the Encoded Gateway API will be communicated to all partners, and
implementers should always ensure that they have the most up-to-date copy by making a
request to Encoded’s Service Desk.

API Specification Documentation

The API specification documentation, in OpenAPI format, can be found at the following URL:

https://sit.encoded.services/api/v1/docs

Changelogs

Changelogs for the Encoded Gateway API and associated services can be found at the
following URL:

https://wiki.encoded.support/changelogs

PUBLIC Page 4 of 74

https://encoded.support
https://sit.encoded.services/api/v1/docs
https://wiki.encoded.support/changelogs

Encoded Gateway API
Developer Guide

URLs
The API will be hosted at a base URL of

https://[env].encoded.services/api/[version]/

where [env] is the environment targeted and [version] is the version targeted. Your IP will
need to be whitelisted to access this service.

The following environments are currently available:

1. prod
Production environment for live transacting.

2. sit
System Integration Testing environment, for implementors to test their
implementation and perform test transactions.

The following versions are currently available:

● v1

PUBLIC Page 5 of 74

Encoded Gateway API
Developer Guide

Authentication

Authentication is via OAuth 2.0 Client Credentials Grant Type, which will return JWT access
tokens. The JWT access token should be provided in the Authorization header for all
requests to the Encoded Gateway API.

The Authentication Server will be hosted at the URL of

https://[env].encoded.services/auth/oauth/token

where [env] is the environment targeted (prod, sit, etc).

To authorise and receive a token for access to the Gateway API, a request must be made
with the Client ID and Client Secret provided as a HTTP Basic Auth Header, along with the
Grant Type provided a query parameter, as in the example request and response below.

POST /auth/oauth/token HTTP/1.1

Host: sit.encoded.services

Authorization: Basic QWxhZGRpbjpPcGVuU2VzYW1l

grant_type=client_credentials

{

"access_token":

"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQiOlsib2F1dGgyLXJlc291cmNlIl0sInNjb3BlIjpbIn

Nlc3Npb25fbGltaXRlZF9yZWFkIl0sImV4cCI6MTYyMDY5MzgwMiwidXNlcmNvZGUiOjI1ODEyOSwiYXV0aG9yaX

RpZXMiOlsiUk9MRV9BUElfU1VCU0NSSUJFUiJdLCJqdGkiOiJ4eGxHdzRWUkJybkExYnVHM3FhcTV3aTR0U00iLC

JjbGllbnRfaWQiOiJBc3RyYWxUZWNoRGV2In0.hqO_0scdeP8yE7h_LMIHKzXMGpinvffAtsoQrL5eoo8hcizHFF

FmSrnwSGciwZWEsp1D98f-qpexeN2vjdEok1ItaGMlibz7hVspMGNNleLwBevjIJOWi3Nf-RAUZc0flOsTz7AKAb

Gph-j5mdfjtxXe5rp61ArPpoe9bRx8tubEcAvgSqIBJtwl6VYqBdkBjK6ytkBUabyWbA3eKZB-gZ4QDMugOt6Sv2

afjyNTD42pPj0FFGOrm2MZZH6YDLgSuqi0enhKbba3h5BWR4S4i78RrexlxufjrbFUs-9OZjkRh1r8QGPWqYGGq8

jMEWsnMH35kI43n9Pdd99S_sbNAw",

"token_type": "bearer",

"expires_in": 21599,

"scopes": "session_limited_read",

"usercode": 258129,

"jti": "xxlGw4VRBrnA1buG3qaq5wi4tSM",

"tokenType": "bearer",

"expiration": "May 11, 2021 1:43:22 AM",

"scope": [

"session_limited_read"

],

"additionalInformation": {

PUBLIC Page 6 of 74

Encoded Gateway API
Developer Guide

"usercode": 258129,

"jti": "xxlGw4VRBrnA1buG3qaq5wi4tSM"

}

}

The returned token should then be provided to all requests to the Encoded Gateway API as
an Authorization Bearer header:

GET /api/1/transactions/4b502950-8801-4112-ba15-88f8eb280525

Authorization: Bearer

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQiOlsib2F1dGgyLXJlc291cmNlIl0

sInNjb3BlIjpbInNlc3Npb25fbGltaXRlZF9yZWFkIl0sImV4cCI6MTYyMDY5MzgwMiwidXN

lcmNvZGUiOjI1ODEyOSwiYXV0aG9yaXRpZXMiOlsiUk9MRV9BUElfU1VCU0NSSUJFUiJdLCJ

qdGkiOiJ4eGxHdzRWUkJybkExYnVHM3FhcTV3aTR0U00iLCJjbGllbnRfaWQiOiJBc3RyYWx

UZWNoRGV2In0.hqO_0scdeP8yE7h_LMIHKzXMGpinvffAtsoQrL5eoo8hcizHFFFmSrnwSGc

iwZWEsp1D98f-qpexeN2vjdEok1ItaGMlibz7hVspMGNNleLwBevjIJOWi3Nf-RAUZc0flOs

Tz7AKAbGph-j5mdfjtxXe5rp61ArPpoe9bRx8tubEcAvgSqIBJtwl6VYqBdkBjK6ytkBUaby

WbA3eKZB-gZ4QDMugOt6Sv2afjyNTD42pPj0FFGOrm2MZZH6YDLgSuqi0enhKbba3h5BWR4S

4i78RrexlxufjrbFUs-9OZjkRh1r8QGPWqYGGq8jMEWsnMH35kI43n9Pdd99S_sbNAw

Authentication for Hosted Payment Fields
When utilising Hosted Payment Fields (see Hosted Payment Fields), it is required to pass a
JWT to the browser in order to initialise the HPF Javascript library. Doing so exposes the
JWT to the front-end, and no longer guarantees that the JWT used for accessing the
protected resources is private.

To protect from this, it is necessary to create a “limited use” JWT which is then used by the
Hosted Payment Fields Javascript library. Note that the library will ONLY accept a limited use
JWT.

To authorise and receive a token for access to the Hosted Payment Fields Javascript
LibraryI, a request must be made with the Client ID and Client Secret provided as a HTTP
Basic Auth Header, along with the Grant Type provided as a query parameter, as with the
usual method of authentication. Additional to this, a Scope of “session_limited_read” must be
provided, along with the session_id of the Session created prior to initialising the Hosted
Payment Fields Javascript Library., as in the example request below:

POST /auth/oauth/token HTTP/1.1

Host: sit.encoded.services

PUBLIC Page 7 of 74

Encoded Gateway API
Developer Guide

Authorization: Basic QWxhZGRpbjpPcGVuU2VzYW1l

grant_type=client_credentials

scope=session_limited_read

session_id=10b3ca21-d9fd-4030-b5f5-fb45f220a6dd

{

"access_token":

"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQiOlsib2F1dGgyLXJlc291cmNlIl0sInNjb3BlIjpbIn

Nlc3Npb25fbGltaXRlZF9yZWFkIl0sImV4cCI6MTYyMDY5MzgwMiwidXNlcmNvZGUiOjI1ODEyOSwiYXV0aG9yaX

RpZXMiOlsiUk9MRV9BUElfU1VCU0NSSUJFUiJdLCJqdGkiOiJ4eGxHdzRWUkJybkExYnVHM3FhcTV3aTR0U00iLC

JjbGllbnRfaWQiOiJBc3RyYWxUZWNoRGV2In0.hqO_0scdeP8yE7h_LMIHKzXMGpinvffAtsoQrL5eoo8hcizHFF

FmSrnwSGciwZWEsp1D98f-qpexeN2vjdEok1ItaGMlibz7hVspMGNNleLwBevjIJOWi3Nf-RAUZc0flOsTz7AKAb

Gph-j5mdfjtxXe5rp61ArPpoe9bRx8tubEcAvgSqIBJtwl6VYqBdkBjK6ytkBUabyWbA3eKZB-gZ4QDMugOt6Sv2

afjyNTD42pPj0FFGOrm2MZZH6YDLgSuqi0enhKbba3h5BWR4S4i78RrexlxufjrbFUs-9OZjkRh1r8QGPWqYGGq8

jMEWsnMH35kI43n9Pdd99S_sbNAw",

"token_type": "bearer",

"expires_in": 21599,

"scopes": "session_limited_read",

"usercode": 258129,

"jti": "xxlGw4VRBrnA1buG3qaq5wi4tSM",

"tokenType": "bearer",

"expiration": "May 11, 2021 1:43:22 AM",

"scope": [

"session_limited_read"

],

"additionalInformation": {

"usercode": 258129,

"jti": "xxlGw4VRBrnA1buG3qaq5wi4tSM"

}

}

PUBLIC Page 8 of 74

Encoded Gateway API
Developer Guide

Resource References
The API allows for the use of resource reference where passing the full object may not be
necessary or preferred. A resource reference has the following structure:

{

"object": "transaction",

"id": "4b502950-8801-4112-ba15-88f8eb280525",

"links": {

"self":

"https://sit.encoded.services/api/1/transactions/4b502950-8801-4112-ba15

-88f8eb280525"

}

}

The object and id fields together uniquely identify a specific resource and can therefore be
used to reference that resource in its entirety. The links field is not required when sending
the resource reference as part of a request, but will be available when the resource
reference makes up part of a response from the API. The links field’s value will be an object
containing links to allow the API user to access the referenced resource directly.

PUBLIC Page 9 of 74

Encoded Gateway API
Developer Guide

Merchant Accounts
A Merchant Account is a type of bank account that is specifically used for accepting
customer payments via a credit or debit card, or an alternative or local payment method such
as Apple Pay or Bancontact respectively. You can get a Merchant Account from an entity
called an Acquirer.

The Gateway API is an Acquirer agnostic platform, which means that transactions can be
processed through any Acquirer that Encoded is connected to. If you do not already have a
relationship with an Acquirer, or are looking to move Acquirers, Encoded can make
recommendations.

Payment Orchestration

The Gateway API is also what is known as a Payment Orchestration Platform, which means
that it can make smart decisions about how and where to route transactions to be
processed. As such, you can have multiple Merchant Accounts with multiple Acquirers, and
allow Encoded’s Gateway API to route transactions to the underlying Acquirer which has the
best outcome for that transaction; whether that be lowest cost, highest acceptance rate, or
any other potential outcome.

This is an automatic process which is governed by configurable rulesets within the Gateway
API. These rules can be configured either via an API (coming soon), via the Merchant
Management Portal (coming soon), or through consultation with your Implementation
Manager.

Explicit Merchant Account Selection

We also provide the flexibility for merchants to make their own decisions on the most
appropriate Merchant Account to use to process each transaction, and provide an optional
API field - transactionRequest.merchantAccountId - to do so. If you wish to take advantage
of this, please speak to your Implementation Manager who will provide you with a list of
Merchant Account IDs.

PUBLIC Page 10 of 74

https://www.encoded.co.uk/payment-orchestration/

Encoded Gateway API
Developer Guide

Orders
An order within the Gateway API allows you to link all related transactions that relate to a
single order between the merchant and the end customer. An order can contain multiple
individual transactions that either capture or refund funds from and to the end customer.

The majority of orders will have either one or two transactions, where either the pay action
has been used to perform a transaction that both authorises and captures the funds
immediately, or where an authorise transaction is followed by a capture transaction to
authorise and capture the funds as two individual transactions, respectively. The former is
more likely when the related good or service is available immediately, and the latter when
the good or service may be provided at a future date, at which point the authorised
transaction is captured (for example, when the product will be dispatched at a later date
once available or in stock).

An order can be created individually from a transaction, or can be created during the initial
transaction, however there is no requirement for an order to be created for a transaction, and
all transactions can be processed on an individual (not linked to an order) basis. Once a
transaction has been created on an individual basis, an order can not be retroactively
applied to it.

An order.id is generated when the order is created. Additionally, a merchant defined
reference can be provided via order.ref for reconciliation with any merchant ordering system.

An order must be created if you wish to take advantage of the Hosted Payment Pages

PUBLIC Page 11 of 74

Encoded Gateway API
Developer Guide

Transactions
Transactions in the Gateway API represent each individual transaction; the status of the
transaction, along with both the request made and the response received. There are a
number of transaction actions that can be performed. These are:

● authorise
Performs an authorisation for the proposed transaction. A successful response from
the acquirer indicates that the payment source provided is valid and that the funds
are available, however no funds are transferred at this time. The acquirer may
reserve the funds for a period of time. An authorisation can be captured at a later
time.

● capture
Performs a capture of a previous authorisation. A successful response from the
acquirer indicates that the funds will be moved from the payer's account to the
merchant's account. When performing a capture, you must provide a previously
successful transaction as the source, as well as the same Order used for the
previous authorisation action.

● pay
Performs an authorisation and capture in a single transaction. A successful response
from the acquirer indicates that the payment source provided is valid, the funds are
available, and that the funds will be moved from the payer's account to the
merchant's account.

● refund
Performs a refund of funds from the merchant's account to the payer's account. A
successful response from the acquirer indicates that the funds will be moved from the
merchant's account to the payer's account. When performing a refund, the source
may be a Card, Token, or a previously successful Transaction, depending on the
underlying gateway provider.

● void
Performs a void of a previous transaction, which will attempt to cancel the previous
transaction. Whether a void will be successful depends on a number of factors, such
as the amount of time between the initial transaction and the void attempt, the
underlying acquirer, the transaction source, etc. It may be necessary to perform a
refund if the void was not successful.

● verify
Performs a verification of the source. The verification method used is that which is
supported by the underlying payment gateway and acquirer.

PUBLIC Page 12 of 74

Encoded Gateway API
Developer Guide

When performing a transaction, a source of the funds needs to be provided via
transaction.source. There are currently six supported source types. These are:

● card
The source of funds is a debit or credit card where the card details (the PAN, expiry
date, security code, etc) are provided directly.

● token
The source of funds is a token that has been previously created. A token is a
reference to a previously used and stored debit or credit card. To create a token, a
transaction will be performed with a card source, which will be provided along with
the transaction.source.card.tokenisation object to indicate that the card details
provided should be stored as a token for future use.

● transaction
The source of funds is a previously performed transaction (where supported by the
underlying acquirer). This is required for performing a capture transaction against a
previously performed authorise transaction

● session
The source of funds is a session in which card details have been collected for use
directly by Encoded. This source type would be used, as an example, when
performing a Hosted Payment Fields transaction.

● google_pay
The source of funds is a Google Pay token.

● apple_pay
The source of funds is an Apple Pay token.

A transaction.id is generated when the transaction is created. Additionally, a merchant
defined reference can be provided via transaction.ref for reconciliation with any merchant
ordering system.

When a transaction is performed by POSTing a transaction.request object to the
/transactions endpoint, the response polls until either: the transaction reaches a processed
or challenged status; or, the poll time provided as a query parameter is met. If the poll time is
met, the transaction is returned in the processing state. Additional requests can be made to
/transactions/{transactionId} which follow the same rules.

PUBLIC Page 13 of 74

Encoded Gateway API
Developer Guide

Authorisation & Capture
There are two individual aspects to a payment transaction, known as the Authorisation and
the Capture. These processes can either be performed at once (with a pay action), or
individually with an authorise action followed by a capture action.

When an authorise action is performed, the gateway sends the card details to the issuer,
who checks the card details provided and, if valid, will hold the funds requested if they are
available. The merchant will be provided with an authorisation code and can then collect the
funds associated with that authorisation within 7 days by performing a capture action. When
a capture is performed, the transaction ID of the authorise action must be provided as part of
the request.

An example Authorisation & Capture flow is shown below. Firstly, an authorise action is
performed:

POST /transactions

{

"object": "transaction.request",

"action": "authorise",

"ref": "trans-1234",

"amount": 20.54,

"currency": "GBP",

"source": {

"object": "source",

"card": {

"object": "card",

"pan": "4444333322221111",

"expiry": "2022-10",

"securityCode": "111"

}

}

}

Which receives the following response:

{

"object": "transaction",

"id": "4b502950-8801-4112-ba15-88f8eb280525",

"creationDate": "2019-07-01T00:00:00Z",

"status": "processed",

PUBLIC Page 14 of 74

Encoded Gateway API
Developer Guide

"request": {

"object": "transaction.request",

"id": "4b502950-8801-4112-ba15-88f8eb280525"

},

"response": {

"object": "transaction.response",

"id": "4b502950-8801-4112-ba15-88f8eb280525",

"result": {

"resultType": "accepted",

"resultCode": "accepted",

"message": "Authorised.",

"authCode": "123456",

"authDate": "2019-07-01T00:00:00Z"

}

},

"links": {

"self":

"https://sit.encoded.services/api/1/transactions/4b502950-8801-4112-ba15

-88f8eb280525"

}

}

The response to the authorise action returns an id field, which will be used for the
subsequent capture action:

POST /transactions

{

"object": "transaction.request",

"action": "capture",

"ref": "trans-1234",

"amount": 20.54,

"currency": "GBP",

"source": {

"object": "source",

"transaction": {

"object": "transaction",

"id": "4b502950-8801-4112-ba15-88f8eb280525"

}

}

}

PUBLIC Page 15 of 74

Encoded Gateway API
Developer Guide

The capture is performed referencing the previous transaction as the source. This receives
the following response indicating that the capture was successful:

{

"object": "transaction",

"id": "2156d9ef-a16a-4e43-b5d2-bfdcb6c9afae",

"creationDate": "2019-07-01T00:00:00Z",

"status": "processed",

"request": {

"object": "transaction.request",

"id": "2156d9ef-a16a-4e43-b5d2-bfdcb6c9afae"

},

"response": {

"object": "transaction.response",

"id": "2156d9ef-a16a-4e43-b5d2-bfdcb6c9afae"

"result": {

"resultType": "accepted",

"resultCode": "accepted",

"message": "Captured."

}

},

"links": {

"self":

"https://sit.encoded.services/api/1/transactions/2156d9ef-a16a-4e43-b5d2

-bfdcb6c9afae"

}

}

Voiding an Authorisation
If you have an outstanding authorisation that will not be captured, you must void the
authorisation as soon as possible. This can be performed with a void action, passing in the
transaction as the source (as with performing a capture).

Partial Capture
If you perform a partial capture on an authorisation - capturing a lower amount then was
authorised - there is no need to additionally void the remaining amount.

PUBLIC Page 16 of 74

Encoded Gateway API
Developer Guide

Excessive Capture
The gateway does not currently support excessive capture. If the capture amount will be
higher than the authorised amount, there are two possible scenarios:

1. Void the existing authorisation, and perform a new authorisation for the entire higher
amount.

2. Perform a second authorisation of the remaining amount (the difference between the
previous authorised amount and the intended capture amount), and then capture
both authorisation when required.

PUBLIC Page 17 of 74

Encoded Gateway API
Developer Guide

Customers
The Gateway API allows for Customer objects to be created that represent the end
customer. These Customer objects can be attached to Orders, Transactions and Tokens.
This is useful functionality to allow these resources to be tied together, and searched and
loaded on a per-customer basis.

Customer objects can either be created explicitly or implicitly during the creation of an Order,
Transaction or Token.

Adding New Customers
Customers can be added explicitly via the Encoded Gateway API. To do this, a POST
request can be made to /customers with an Array of Customer objects:

[{

"object": "customer",

"ref": "12345-19850701",

"title": "Mr",

"forename": "John",

"surname": "Doe",

"dateOfBirth": "1985-07-01",

"contact": {

"object": "contact",

"address": {

"object": "address",

"title": "Mr",

"forename": "John",

"surname": "Doe",

"postcode": "AB1 2CD",

}

},

"attributes": {

"account": [

{

"accountNumber": "100001234",

"paymentAmount": 100.00,

"arrearsAmount": 100.00,

"tokenisationEnabled": true,

"creditCardsEnabled": true,

"defaultToken": "2156d9ef-a16a-4e43-b5d2-bfdcb6c9afae"

},

{

PUBLIC Page 18 of 74

Encoded Gateway API
Developer Guide

"accountNumber": "100009999",

"paymentAmount": 450.25,

"arrearsAmount": 100.00,

"tokenisationEnabled": true,

"creditCardsEnabled": true,

"defaultToken": "2156d9ef-a16a-4e43-b5d2-bfdcb6c9afae"

},

]

}]

Shown above is a Customer object example with non-required fields removed.
The ref field shown should be a unique identifier from the merchant for the customer, such
as a unique customer or account ID.

The attributes field allows for custom attributes to be saved against the Customer object.
This is shown in more detail in the Custom Attributes section below.

Updating Existing Customers
In order to update an existing Customer resource, the existing Customer resource must first
be identified directly via the id, or searched for via the ref, or any attribute contained within
the attributes Object. There are two main methods for doing this:

1. When a customer resource is created, it is generated a unique id which is included in
the response object. This can be used to identify the resource directly..

2. Customer records can be searched by including the targeted reference in the query
string, which returns an Array of matching Customer resources. The correct
Customer resource should be identified and the id used to directly access the
resource.

Once the id of the Customer resource is known, a PUT request can be made to
/customers/{customerId} along with the Customer object to replace the existing object.

GET /customers?page=0&results=1&attributes.account.accountNumber=12345

[{

"object": "customer",

"id": "7ff16945-db98-4216-af7d-cf6094ae5f61",

"ref": "12345-19850701",

"title": "Mr",

"forename": "John",

"surname": "Doe",

"dateOfBirth": "1985-07-01",

PUBLIC Page 19 of 74

Encoded Gateway API
Developer Guide

"contact": {

"object": "contact",

"address": {

"object": "address",

"title": "Mr",

"forename": "John",

"surname": "Doe",

"postcode": "AB1 2CD",

}

},

"attributes": {

"account:" {

"accountNumber": "12345",

"paymentAmount": 100.00,

"arrearsAmount": 100.00,

"tokenisationEnabled": true,

"creditCardsEnabled": true

}

}

}]

PUT /customers/7ff16945-db98-4216-af7d-cf6094ae5f61

{

"object": "customer",

"ref": "12345-19850701",

"title": "Mr",

"forename": "John",

"surname": "Doe",

"dateOfBirth": "1985-07-01",

"contact": {

"object": "contact",

"address": {

"object": "address",

"title": "Mr",

"forename": "John",

"surname": "Doe",

"postcode": "AB1 2CD",

}

},

"attributes":

"account:" {

"accountNumber": "12345",

"paymentAmount": 150.00,

PUBLIC Page 20 of 74

Encoded Gateway API
Developer Guide

"arrearsAmount": 100.00,

"tokenisationEnabled": true,

"creditCardsEnabled": true,

"defaultToken": "2156d9ef-a16a-4e43-b5d2-bfdcb6c9afae"

}

}

}

The above example searches for an existing customer who has a custom attribute of
account.accountNumber with the value 12345, and updates their payment amount (another
custom attribute) from 100.00 to 150.00.

Deleting Existing Customers
The same method is applicable for deleting existing customers. A customer resource can be
deleted by making a DELETE request to /customers/{customerId}.

Be aware that tokens associated with that customer resource will also subsequently be
deleted.

Custom Attributes
The Customer object allows attributes to be provided to extend what information can be
provided about a customer. This has many applicable use cases, such as setting specific
feature flags for certain customers (whether this customer is allowed to be with credit cards,
as an example), default payment amounts, preferred tokens for scheduled payments, etc.
Below shows an example of setting some additional account information, some default
payment values, and setting some feature flags.

"attributes": {

"account": {

"accountNumber": "100001234",

"paymentAmount": 800.00,

"arrearsAmount": 100.00,

"tokenisationEnabled": true,

"creditCardsEnabled": true,

"defaultToken": "2156d9ef-a16a-4e43-b5d2-bfdcb6c9afae"

}

}

This object can also be provided as an Array if required.

PUBLIC Page 21 of 74

Encoded Gateway API
Developer Guide

"attributes": {

"account": [

{

"accountNumber": "100001234",

"paymentAmount": 100.00,

"arrearsAmount": 100.00,

"tokenisationEnabled": true,

"creditCardsEnabled": true,

"defaultToken": "2156d9ef-a16a-4e43-b5d2-bfdcb6c9afae"

},

{

"accountNumber": "100009999",

"paymentAmount": 450.25,

"arrearsAmount": 100.00,

"tokenisationEnabled": true,

"creditCardsEnabled": true,

"defaultToken": "2156d9ef-a16a-4e43-b5d2-bfdcb6c9afae"

},

]

}

Custom attributes support Strings, Numbers, Booleans, Objects and Arrays as values.

PUBLIC Page 22 of 74

Encoded Gateway API
Developer Guide

Tokens
Tokenisation allows merchants to store payment details in exchange for a token. The token
can be identified via a token ID and subsequently used to perform new transactions without
having to recollect all (or any) of the sensitive card details from the cardholder. This is a
useful feature to help implementers and merchants to reduce their PCI compliance burden
by reducing the scope of their cardholder data environment. It should be noted that this is
distinct from performing a follow-up transaction - for example, a capture following an
authorisation - using the transaction ID of the original transaction, and is targeted at
implementers who wish to make new transactions at a future date without having to recollect
card details.

Tokens can be created from any transaction that provides a card as the transaction source.
This can be achieved by including a tokenisation object alongside the card object, as in the
below example:

"card": {

"object": "card",

"pan": "4444333322221111",

"expiry": "2022-10",

"securityCode": "111",

"tokenisation": {

"object": "tokenisation",

"agreement": "card_on_file",

"ref": "token-1234"

}

}

The above example indicates that we wish to tokenise the card details provided with an
agreement type of card_on_file, and a ref of token-1234. The agreement type indicates
how we intend to use the token, and will be one of:

● card_on_file
A transaction using a stored card for a fixed/variable amount which is not part of a
scheduled/regular agreement but where the Cardholder themselves initiates the
payment. For example, a stored card transaction initiated by the cardholder directly
via an E-com or IVR channel, or indirectly (by verbally authorising) via a virtual
terminal.

● recurring
A transaction in a series of transactions processed for the purchase of
goods/services provided at regular/fixed intervals. For example, a stored card

PUBLIC Page 23 of 74

Encoded Gateway API
Developer Guide

transaction performed for an ongoing service such as payment towards utility bills,
subscriptions, etc.

● instalment
A transaction in a series of transactions processed over a set period and number of
payments for a single purchase of goods/services. For example, a stored card
transaction performed for a one-off service/good, such as making monthly payments
towards a large purchase.

● unscheduled
A transaction using a stored credential for a fixed/variable amount which is not part of
a scheduled/regular agreement but where the Cardholder has provided consent for
the Merchant to initiate one or more future transactions. For example, a stored card
transaction performed as a secondary means of payment when a primary means
(such as Direct Debit) has failed.

The authorise, capture, pay, and verify actions can be used to create a token. Using the
verify action means that only basic verification of the card will be performed, and does
heighten the risk that a subsequent transaction performed on that token may fail.

Once the transaction has finished processing, the transaction.response will contain the token
object for any token created as a result of that transaction being processed.

Once a token has been created, it can subsequently be provided as the source for any future
transaction request to attempt to collect the funds from the original card.

Retrieving Tokens for a Customer
The best method of retrieving a token is via an associated Customer. To do this, make a
GET request to /customers/{customerId}/tokens to retrieve an array of all tokens associated
with the Customer.

GET /customers/7ff16945-db98-4216-af7d-cf6094ae5f61/tokens

[{

"object": "token",

"id": "09f50370-8d25-43b7-8250-2b2e56b360bd",

"creationDate": "2019-07-01T00:00:00Z",

"ref": "token-1234",

"pan": "465858******6034",

"expiry": "2020-05",

"securityCode": "***",

"issuer": {

PUBLIC Page 24 of 74

Encoded Gateway API
Developer Guide

"object": "issuer",

"id": "465858",

"scheme": "Visa",

"type": "Credit",

"brand": "Barclays Bank Plc",

"level": "Classic",

"country": "GBR"

},

"agreement": "card_on_file",

"billingCustomer": {

"object": "customer",

"id": "7ff16945-db98-4216-af7d-cf6094ae5f61",

"links": {

"self":

"https://sit.encoded.services/api/1/customer/7ff16945-db98-4216-af7d-cf6

094ae5f61"

}

}

}]

Retrieving all Tokens
An array of all existing token resources can be retrieved by making a GET request to /tokens
along with suitable paging query parameters.

Making a Token Payment
Below is an example of a transaction request being made with a Token as the source of
funds.

POST /transactions

{

"object": "transaction.request",

"action": "pay",

"ref": "12345-19850701/20190801-1",

"currency": "GBP",

"amount": 100.00,

"source": {

"object": "source",

"token": {

"object": "token",

PUBLIC Page 25 of 74

Encoded Gateway API
Developer Guide

"id": "09f50370-8d25-43b7-8250-2b2e56b360bd"

}

},

"billingCustomer": {

"object": "customer",

"id": "7ff16945-db98-4216-af7d-cf6094ae5f61",

}

}

PUBLIC Page 26 of 74

Encoded Gateway API
Developer Guide

Alternative Payment Methods (APMs)
APMs are alternative ways of making payment through the Gateway other than directly via a
debit or credit card or a stored card token. The Encoded Gateway offers the following APMs.

Apple Pay
Apple Pay is the one way to pay. It replaces your physical cards and cash with an easier,
safer, more secure and private payment method — whether you’re in a shop, on a website or
in an app. It’s money, made modern.

Set up Apple Pay

Apple Developer Account

Firstly, you will need to set up an Apple Developer account. If you do not already have one,
follow the link and click on Account in the top right corner. An Apple Developer account is a
paid account which has a cost of approximately £80 per year as at July 2023. If you already
have an Apple Developer account, skip to the next step.

Create a merchant identifier

A merchant identifier uniquely identifies you to Apple Pay as a merchant who is able to
accept payments. A merchant identifier never expires, and you can use the same one for
multiple apps.

1. Within your Apple Developer account, in “Certificates, IDs & Profiles”, click Identifiers
in the sidebar, then click the add button (+) on the top left. Select Merchant IDs, then
click Continue.

2. Enter a useful description that will help you to identify what the merchant identifier is
being used for.

3. Enter your merchant identifier name in the Identifier section. It is strongly
recommended that you use a descriptive identifier including the environment and
domain that you will use it within. For example: merchant.services.encoded.prod

4. Review the settings, then click Register.

Alternatively, you can create a merchant identifier in Xcode.

Create a payment processing certificate

A payment processing certificate is associated with your merchant identifier and used to
encrypt payment information. The payment processing certificate expires every 25 months. If
the certificate is revoked, you can recreate it.

PUBLIC Page 27 of 74

https://developer.apple.com/

Encoded Gateway API
Developer Guide

Creating a payment processing certificate is a three step process; generating a Certificate
Signing Request (CSR) from Encoded - either via an API request or via the Merchant
Management Portal (coming soon), generating the Apple Pay Payment Processing
Certificate within the Apple Developer account, and then uploading the Apple Pay Payment
Processing Certificate to Encoded - again either via an API request or via the Merchant
Management Portal (coming soon).

Generate a certificate signing request

To generate a certificate signing request, use the API endpoint along with the merchant
identifier created in the above steps. An example request:

POST /applepay/signing-requests

{

"merchantIdentifier": "merchant.services.encoded.prod"

}

We will then generate a certificate signing request on your behalf, along with an ID that can
be used to later provide us with the Apple Pay Payment Processing Certificate.

You will receive the following example response:

{

"id": "4fefad24-a6ce-41ba-a222-c823a31e7961",

"csr": "-----BEGIN CERTIFICATE REQUEST-----

MIHZMIGBAgEAMB8xEDAOBgNVBAoMB0VuY29kZWQxCzAJBgNVBAYTAkdCMFkwEwYHKoZIzj0C

AQYIKoZIzj0DAQcDQgAE/XoGBUX8cuCCRovY1bxARjp5sl9hsk6yaBG/J3rBQoI9GmDpc6k4

HbQfWaUo/3mNMxbAU6v09TMUGx1c43brTaAAMAoGCCqGSM49BAMCA0cAMEQCIEI6RssKkutV

bmIdfwAXQj8c+087uV+cNf2AHJcgcLS1AiB682f8sWjhDc5G11kKGh/FHTEXkAYKULW60b6B

DliOmg== -----END CERTIFICATE REQUEST-----",

"links": {

"self":

"https://sit.encoded.services/api/1/applepay/certificates/4fefad24-a6ce-

41ba-a222-c823a31e7961"

}

}

The content provided to you in the csr field should be saved as a .cer file to later be
provided to Apple Pay. Additionally, the link provided in the links.self field will be the endpoint
that you will later use to provide Apple Pay Payment Processing Certificate back to
Encoded.

PUBLIC Page 28 of 74

Encoded Gateway API
Developer Guide

Create a payment processing certificate

To create an Apple Pay Payment Processing Certificate, you need to provide the generated
CSR to Apple.

1. Within your Apple Developer account, in “Certificates, IDs & Profiles”, click Identifiers
in the sidebar, then select “Merchant IDs” on the drop-down on the right hand side of
the screen.

2. Select the merchant identifier that was created in the above steps.

3. In the Apple Pay Payment Processing Certificate section - make sure you’re not in
the Apple Pay Merchant Identity Certificate section - select Create Certificate.

4. Respond No to the question about processing in China and select Continue.

5. Upload the .csr file from the above step and select Continue.

6. Select Download to receive your Apple Pay Payment Processing Certificate in .cer
format.

Upload the payment processing certificate

The Apple Pay Payment Processing Certificate must then be provided to Encoded in PEM
format to the endpoint previously provided in the signing-requests response. An example
request:

POST /applepay/certificates/4fefad24-a6ce-41ba-a222-c823a31e7961

{

"certificate": "-----BEGIN CERTIFICATE-----

MIIEezCCBCGgAwIBAgIIDM6aT+Ea5xYwCgYIKoZIzj0EAwIwgYAxNDAyBgNVBAMMK0FwcGxl

IFdvcmxkd2lkZSBEZXZlbG9wZXIgUmVsYXRpb25zIENBIC0gRzIxJjAkBgNVBAsMHUFwcGxl

IENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQG

EwJVUzAeFw0yMzA1MjQxMjEwMzlaFw0yNTA2MjIxMjEwMzhaMIGsMS0wKwYKCZImiZPyLGQB

AQwdbWVyY2hhbnQuc2VydmljZXMuZW5jb2RlZC5kZXYxQzBBBgNVBAMMOkFwcGxlIFBheSBQ

YXltZW50IFByb2Nlc3Npbmc6bWVyY2hhbnQuc2VydmljZXMuZW5jb2RlZC5kZXYxEzARBgNV

BAsMCkpQNlMzWUZRNDYxFDASBgNVBAoMC0VuY29kZWQgTHRkMQswCQYDVQQGEwJHQjBZMBMG

ByqGSM49AgEGCCqGSM49AwEHA0IABH8KdeLni4Nx5aW3u4b2Axhyt2Nb5Rdn/loI+HWY+X/6

hCHO9Png4EIVe2HgYguGL6dN+zpi2YojYLespk5UocWjggJVMIICUTAMBgNVHRMBAf8EAjAA

MB8GA1UdIwQYMBaAFIS2hMw6hmJyFlmU6BqjvUjfOt8LMEcGCCsGAQUFBwEBBDswOTA3Bggr

BgEFBQcwAYYraHR0cDovL29jc3AuYXBwbGUuY29tL29jc3AwNC1hcHBsZXd3ZHJjYTIwMTCC

AR0GA1UdIASCARQwggEQMIIBDAYJKoZIhvdjZAUBMIH+MIHDBggrBgEFBQcCAjCBtgyBs1Jl

bGlhbmNlIG9uIHRoaXMgY2VydGlmaWNhdGUgYnkgYW55IHBhcnR5IGFzc3VtZXMgYWNjZXB0

YW5jZSBvZiB0aGUgdGhlbiBhcHBsaWNhYmxlIHN0YW5kYXJkIHRlcm1zIGFuZCBjb25kaXRp

PUBLIC Page 29 of 74

Encoded Gateway API
Developer Guide

b25zIG9mIHVzZSwgY2VydGlmaWNhdGUgcG9saWN5IGFuZCBjZXJ0aWZpY2F0aW9uIHByYWN0

aWNlIHN0YXRlbWVudHMuMDYGCCsGAQUFBwIBFipodHRwOi8vd3d3LmFwcGxlLmNvbS9jZXJ0

aWZpY2F0ZWF1dGhvcml0eS8wNgYDVR0fBC8wLTAroCmgJ4YlaHR0cDovL2NybC5hcHBsZS5j

b20vYXBwbGV3d2RyY2EyLmNybDAdBgNVHQ4EFgQU4gztoVmaREZ+pQTBLn5xebNpm0MwDgYD

VR0PAQH/BAQDAgMoME8GCSqGSIb3Y2QGIARCDEAzOEQzMjhCMzk5NzQ0MTU4QjgxNDg0N0Ex

QkM5QkIzRjNFRUNGQTJEQURGMTNERTI1Mzg5OUIxRUE2RDQ3QzM3MAoGCCqGSM49BAMCA0gA

MEUCIQDrrNeql2HlX2Xjx9a7Z5XJ+VVzPV4/cMLX1VjU8/YUkAIgOWvxwFVCf7KhZ2T4U7kU

BOy7B7cVKK1ZW7MchMygsX8= -----END CERTIFICATE-----"

}

Configure Apple Pay on the web

If you are using Apple Pay on the web, you will need to additionally register and verify your
domain, and create a Merchant Identity Certificate. You will need to perform these tasks
within your Apple Developer account, and will subsequently need to ensure that your
frontend implementation makes use of the Merchant Identity Certificate created in this step.

Checkout Implementation
Please see the Apple Pay API documentation for information on how to integrate Apple Pay
into your checkout.

● Apple Pay on the web
● PassKit (Apple Pay and Wallet) in app

Using the Apple Pay API
When creating the ApplePayPaymentRequest, you must set the values of
supportedNetworks and merchantCapabilities to values supported by Encoded.

You can define which payment schemes are supported. Encoded currently supports
American Express, Discovery, Mastercard and Visa.

const supportedNetworks = ["amex", "discover", "masterCard", "visa"];

You will also need to define the merchant capabilities.

const merchantCapabilities = ["supports3DS"];

PUBLIC Page 30 of 74

https://developer.apple.com/help/account/configure-app-capabilities/configure-apple-pay-on-the-web#create-a-merchant-identity-certificate
https://developer.apple.com/help/account/configure-app-capabilities/configure-apple-pay-on-the-web#create-a-merchant-identity-certificate
https://developer.apple.com/apple-pay/
https://developer.apple.com/documentation/apple_pay_on_the_web
https://developer.apple.com/documentation/passkit
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentrequest
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentrequest/1916122-supportednetworks
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentrequest/1916123-merchantcapabilities

Encoded Gateway API
Developer Guide

Receiving the Payment Token from Apple Pay
Once your checkout has completed the Apple Pay process, an ApplePayPayment object will
be returned to your application in the ApplePaySession.onpaymentauthorized event
handler. The following fields will need to be sent to the Encoded Gateway:

ApplePayPayment.token

An example of the value contained in this field is below:

{"paymentData":{"data":"/U4zEWwhShc9GCiJorjt1WOvIC/Hx6dwdUGLLQUjtbIsG4Uj

tN61ovF1Y0Qm43zeXn1xogIcTVoG8qd0hoWzdqo8/8HqkWPgYwo+CKlPgh3ipCGy+GdPEEw9

0RXdESZ8Wwe1ZhGtojKsA8SNg4plPVNPGb9kGb0uFPQQ3Sbg7794rn1RmOFcuE7+3VnYJeB7

lvNoV7h2q2i90OWTXnliYy/IpVBV1uA3DBKHqzeAsZ25vuIWi6HCZBPlG8cMrL0BbHdNw7Mu

/ghIsYLWyOSrOQpmIGLDZ8CAVxVWSOLeQ/JR1ZuvxjThaeA+wrTchfZiV+incoe2pJJhbx2d

CZ+dmsps3Ne9LxYGxxI10RnZpDDoNBUwG7cOX5j04OGoneGJIc+2IjTV7GH0osfZ","signa

ture":"MIAGCSqGSIb3DQEHAqCAMIACAQExDTALBglghkgBZQMEAgEwgAYJKoZIhvcNAQcBA

ACggDCCA+MwggOIoAMCAQICCEwwQUlRnVQ2MAoGCCqGSM49BAMCMHoxLjAsBgNVBAMMJUFwc

GxlIEFwcGxpY2F0aW9uIEludGVncmF0aW9uIENBIC0gRzMxJjAkBgNVBAsMHUFwcGxlIENlc

nRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVU

zAeFw0xOTA1MTgwMTMyNTdaFw0yNDA1MTYwMTMyNTdaMF8xJTAjBgNVBAMMHGVjYy1zbXAtY

nJva2VyLXNpZ25fVUM0LVBST0QxFDASBgNVBAsMC2lPUyBTeXN0ZW1zMRMwEQYDVQQKDApBc

HBsZSBJbmMuMQswCQYDVQQGEwJVUzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABMIVd+3r1

seyIY9o3XCQoSGNx7C9bywoPYRgldlK9KVBG4NCDtgR80B+gzMfHFTD9+syINa61dTv9JKJi

T58DxOjggIRMIICDTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFCPyScRPk+TvJ+bE9ihsP

6K7/S5LMEUGCCsGAQUFBwEBBDkwNzA1BggrBgEFBQcwAYYpaHR0cDovL29jc3AuYXBwbGUuY

29tL29jc3AwNC1hcHBsZWFpY2EzMDIwggEdBgNVHSAEggEUMIIBEDCCAQwGCSqGSIb3Y2QFA

TCB/jCBwwYIKwYBBQUHAgIwgbYMgbNSZWxpYW5jZSBvbiB0aGlzIGNlcnRpZmljYXRlIGJ5I

GFueSBwYXJ0eSBhc3N1bWVzIGFjY2VwdGFuY2Ugb2YgdGhlIHRoZW4gYXBwbGljYWJsZSBzd

GFuZGFyZCB0ZXJtcyBhbmQgY29uZGl0aW9ucyBvZiB1c2UsIGNlcnRpZmljYXRlIHBvbGlje

SBhbmQgY2VydGlmaWNhdGlvbiBwcmFjdGljZSBzdGF0ZW1lbnRzLjA2BggrBgEFBQcCARYqa

HR0cDovL3d3dy5hcHBsZS5jb20vY2VydGlmaWNhdGVhdXRob3JpdHkvMDQGA1UdHwQtMCswK

aAnoCWGI2h0dHA6Ly9jcmwuYXBwbGUuY29tL2FwcGxlYWljYTMuY3JsMB0GA1UdDgQWBBSUV

9tv1XSBhomJdi9+V4UH55tYJDAOBgNVHQ8BAf8EBAMCB4AwDwYJKoZIhvdjZAYdBAIFADAKB

ggqhkjOPQQDAgNJADBGAiEAvglXH+ceHnNbVeWvrLTHL+tEXzAYUiLHJRACth69b1UCIQDRi

zUKXdbdbrF0YDWxHrLOh8+j5q9svYOAiQ3ILN2qYzCCAu4wggJ1oAMCAQICCEltL786mNqXM

AoGCCqGSM49BAMCMGcxGzAZBgNVBAMMEkFwcGxlIFJvb3QgQ0EgLSBHMzEmMCQGA1UECwwdQ

XBwbGUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJB

gNVBAYTAlVTMB4XDTE0MDUwNjIzNDYzMFoXDTI5MDUwNjIzNDYzMFowejEuMCwGA1UEAwwlQ

XBwbGUgQXBwbGljYXRpb24gSW50ZWdyYXRpb24gQ0EgLSBHMzEmMCQGA1UECwwdQXBwbGUgQ

2VydGlmaWNhdGlvbiBBdXRob3JpdHkxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTA

lVTMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8BcRhBnXZIXVGl4lgQd26ICi7957rk3gj

PUBLIC Page 31 of 74

https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypayment

Encoded Gateway API
Developer Guide

fxLk+EzVtVmWzWuItCXdg0iTnu6CP12F86Iy3a7ZnC+yOgphP9URaOB9zCB9DBGBggrBgEFB

QcBAQQ6MDgwNgYIKwYBBQUHMAGGKmh0dHA6Ly9vY3NwLmFwcGxlLmNvbS9vY3NwMDQtYXBwb

GVyb290Y2FnMzAdBgNVHQ4EFgQUI/JJxE+T5O8n5sT2KGw/orv9LkswDwYDVR0TAQH/BAUwA

wEB/zAfBgNVHSMEGDAWgBS7sN6hWDOImqSKmd6+veuv2sskqzA3BgNVHR8EMDAuMCygKqAoh

iZodHRwOi8vY3JsLmFwcGxlLmNvbS9hcHBsZXJvb3RjYWczLmNybDAOBgNVHQ8BAf8EBAMCA

QYwEAYKKoZIhvdjZAYCDgQCBQAwCgYIKoZIzj0EAwIDZwAwZAIwOs9yg1EWmbGG+zXDVspiv

/QX7dkPdU2ijr7xnIFeQreJ+Jj3m1mfmNVBDY+d6cL+AjAyLdVEIbCjBXdsXfM4O5Bn/Rd8L

CFtlk/GcmmCEm9U+Hp9G5nLmwmJIWEGmQ8Jkh0AADGCAYkwggGFAgEBMIGGMHoxLjAsBgNVB

AMMJUFwcGxlIEFwcGxpY2F0aW9uIEludGVncmF0aW9uIENBIC0gRzMxJjAkBgNVBAsMHUFwc

GxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDV

QQGEwJVUwIITDBBSVGdVDYwCwYJYIZIAWUDBAIBoIGTMBgGCSqGSIb3DQEJAzELBgkqhkiG9

w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTIzMDcwMzE0MzAxMVowKAYJKoZIhvcNAQk0MRswGTALB

glghkgBZQMEAgGhCgYIKoZIzj0EAwIwLwYJKoZIhvcNAQkEMSIEINRuT6QZlwurSiEyAKJ6f

J0RRujEuseHS7s+IvKZNsDwMAoGCCqGSM49BAMCBEgwRgIhAMOwACcuWbaC1wY0w8saXsU9O

s94a+w7O456xIJ6OC6CAiEAolr3LxqAr3v2HGnR6RUvfr67XLNHGMATQ7j1uPlzUjkAAAAAA

AA=","header":{"publicKeyHash":"kNfaKFR9Oad5u80zOYLcK9ZWw4T5ZY8XdroU4l8S

Y6k=","ephemeralPublicKey":"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEU95jmBYL

B7aGq1Z7IyMMTbE4PPXKj6Q8xZ9IvnuysurrIGVuUBWU3IlT+O5xqRCvh9SBWxRxg6PK0ace

eaLSOA==","transactionId":"a5a00ce5542237beddd513108b5d14232276ebb238de0

1d0f816cce442630ffd"},"version":"EC_v1"},"paymentMethod":{"displayName":

"MasterCard

0049","network":"MasterCard","type":"credit"},"transactionIdentifier":"A

5A00CE5542237BEDDD513108B5D14232276EBB238DE01D0F816CCE442630FFD"}

You must base64 this value prior to sending to Encoded. Example below:

eyJwYXltZW50RGF0YSI6eyJkYXRhIjoiL1U0ekVXd2hTaGM5R0NpSm9yanQxV092SUMvSHg2

ZHdkVUdMTFFVanRiSXNHNFVqdE42MW92RjFZMFFtNDN6ZVhuMXhvZ0ljVFZvRzhxZDBob1d6

ZHFvOC84SHFrV1BnWXdvK0NLbFBnaDNpcENHeStHZFBFRXc5MFJYZEVTWjhXd2UxWmhHdG9q

S3NBOFNOZzRwbFBWTlBHYjlrR2IwdUZQUVEzU2JnNzc5NHJuMVJtT0ZjdUU3KzNWbllKZUI3

bHZOb1Y3aDJxMmk5ME9XVFhubGlZeS9JcFZCVjF1QTNEQktIcXplQXNaMjV2dUlXaTZIQ1pC

UGxHOGNNckwwQmJIZE53N011L2doSXNZTFd5T1NyT1FwbUlHTERaOENBVnhWV1NPTGVRL0pS

MVp1dnhqVGhhZUErd3JUY2hmWmlWK2luY29lMnBKSmhieDJkQ1orZG1zcHMzTmU5THhZR3h4

STEwUm5acEREb05CVXdHN2NPWDVqMDRPR29uZUdKSWMrMklqVFY3R0gwb3NmWiIsInNpZ25h

dHVyZSI6Ik1JQUdDU3FHU0liM0RRRUhBcUNBTUlBQ0FRRXhEVEFMQmdsZ2hrZ0JaUU1FQWdF

d2dBWUpLb1pJaHZjTkFRY0JBQUNnZ0RDQ0ErTXdnZ09Jb0FNQ0FRSUNDRXd3UVVsUm5WUTJN

QW9HQ0NxR1NNNDlCQU1DTUhveExqQXNCZ05WQkFNTUpVRndjR3hsSUVGd2NHeHBZMkYwYVc5

dUlFbHVkR1ZuY21GMGFXOXVJRU5CSUMwZ1J6TXhKakFrQmdOVkJBc01IVUZ3Y0d4bElFTmxj

blJwWm1sallYUnBiMjRnUVhWMGFHOXlhWFI1TVJNd0VRWURWUVFLREFwQmNIQnNaU0JKYm1N

dU1Rc3dDUVlEVlFRR0V3SlZVekFlRncweE9UQTFNVGd3TVRNeU5UZGFGdzB5TkRBMU1UWXdN

VE15TlRkYU1GOHhKVEFqQmdOVkJBTU1IR1ZqWXkxemJYQXRZbkp2YTJWeUxYTnBaMjVmVlVN

MExWQlNUMFF4RkRBU0JnTlZCQXNNQzJsUFV5QlRlWE4wWlcxek1STXdFUVlEVlFRS0RBcEJj

PUBLIC Page 32 of 74

Encoded Gateway API
Developer Guide

SEJzWlNCSmJtTXVNUXN3Q1FZRFZRUUdFd0pWVXpCWk1CTUdCeXFHU000OUFnRUdDQ3FHU000

OUF3RUhBMElBQk1JVmQrM3Ixc2V5SVk5bzNYQ1FvU0dOeDdDOWJ5d29QWVJnbGRsSzlLVkJH

NE5DRHRnUjgwQitnek1mSEZURDkrc3lJTmE2MWRUdjlKS0ppVDU4RHhPamdnSVJNSUlDRFRB

TUJnTlZIUk1CQWY4RUFqQUFNQjhHQTFVZEl3UVlNQmFBRkNQeVNjUlBrK1R2SitiRTlpaHNQ

Nks3L1M1TE1FVUdDQ3NHQVFVRkJ3RUJCRGt3TnpBMUJnZ3JCZ0VGQlFjd0FZWXBhSFIwY0Rv

dkwyOWpjM0F1WVhCd2JHVXVZMjl0TDI5amMzQXdOQzFoY0hCc1pXRnBZMkV6TURJd2dnRWRC

Z05WSFNBRWdnRVVNSUlCRURDQ0FRd0dDU3FHU0liM1kyUUZBVENCL2pDQnd3WUlLd1lCQlFV

SEFnSXdnYllNZ2JOU1pXeHBZVzVqWlNCdmJpQjBhR2x6SUdObGNuUnBabWxqWVhSbElHSjVJ

R0Z1ZVNCd1lYSjBlU0JoYzNOMWJXVnpJR0ZqWTJWd2RHRnVZMlVnYjJZZ2RHaGxJSFJvWlc0

Z1lYQndiR2xqWVdKc1pTQnpkR0Z1WkdGeVpDQjBaWEp0Y3lCaGJtUWdZMjl1WkdsMGFXOXVj

eUJ2WmlCMWMyVXNJR05sY25ScFptbGpZWFJsSUhCdmJHbGplU0JoYm1RZ1kyVnlkR2xtYVdO

aGRHbHZiaUJ3Y21GamRHbGpaU0J6ZEdGMFpXMWxiblJ6TGpBMkJnZ3JCZ0VGQlFjQ0FSWXFh

SFIwY0RvdkwzZDNkeTVoY0hCc1pTNWpiMjB2WTJWeWRHbG1hV05oZEdWaGRYUm9iM0pwZEhr

dk1EUUdBMVVkSHdRdE1Dc3dLYUFub0NXR0kyaDBkSEE2THk5amNtd3VZWEJ3YkdVdVkyOXRM

MkZ3Y0d4bFlXbGpZVE11WTNKc01CMEdBMVVkRGdRV0JCU1VWOXR2MVhTQmhvbUpkaTkrVjRV

SDU1dFlKREFPQmdOVkhROEJBZjhFQkFNQ0I0QXdEd1lKS29aSWh2ZGpaQVlkQkFJRkFEQUtC

Z2dxaGtqT1BRUURBZ05KQURCR0FpRUF2Z2xYSCtjZUhuTmJWZVd2ckxUSEwrdEVYekFZVWlM

SEpSQUN0aDY5YjFVQ0lRRFJpelVLWGRiZGJyRjBZRFd4SHJMT2g4K2o1cTlzdllPQWlRM0lM

TjJxWXpDQ0F1NHdnZ0oxb0FNQ0FRSUNDRWx0TDc4Nm1OcVhNQW9HQ0NxR1NNNDlCQU1DTUdj

eEd6QVpCZ05WQkFNTUVrRndjR3hsSUZKdmIzUWdRMEVnTFNCSE16RW1NQ1FHQTFVRUN3d2RR

WEJ3YkdVZ1EyVnlkR2xtYVdOaGRHbHZiaUJCZFhSb2IzSnBkSGt4RXpBUkJnTlZCQW9NQ2tG

d2NHeGxJRWx1WXk0eEN6QUpCZ05WQkFZVEFsVlRNQjRYRFRFME1EVXdOakl6TkRZek1Gb1hE

VEk1TURVd05qSXpORFl6TUZvd2VqRXVNQ3dHQTFVRUF3d2xRWEJ3YkdVZ1FYQndiR2xqWVhS

cGIyNGdTVzUwWldkeVlYUnBiMjRnUTBFZ0xTQkhNekVtTUNRR0ExVUVDd3dkUVhCd2JHVWdR

MlZ5ZEdsbWFXTmhkR2x2YmlCQmRYUm9iM0pwZEhreEV6QVJCZ05WQkFvTUNrRndjR3hsSUVs

dVl5NHhDekFKQmdOVkJBWVRBbFZUTUZrd0V3WUhLb1pJemowQ0FRWUlLb1pJemowREFRY0RR

Z0FFOEJjUmhCblhaSVhWR2w0bGdRZDI2SUNpNzk1N3JrM2dqZnhMaytFelZ0Vm1Xeld1SXRD

WGRnMGlUbnU2Q1AxMkY4Nkl5M2E3Wm5DK3lPZ3BoUDlVUmFPQjl6Q0I5REJHQmdnckJnRUZC

UWNCQVFRNk1EZ3dOZ1lJS3dZQkJRVUhNQUdHS21oMGRIQTZMeTl2WTNOd0xtRndjR3hsTG1O

dmJTOXZZM053TURRdFlYQndiR1Z5YjI5MFkyRm5NekFkQmdOVkhRNEVGZ1FVSS9KSnhFK1Q1

TzhuNXNUMktHdy9vcnY5TGtzd0R3WURWUjBUQVFIL0JBVXdBd0VCL3pBZkJnTlZIU01FR0RB

V2dCUzdzTjZoV0RPSW1xU0ttZDYrdmV1djJzc2txekEzQmdOVkhSOEVNREF1TUN5Z0txQW9o

aVpvZEhSd09pOHZZM0pzTG1Gd2NHeGxMbU52YlM5aGNIQnNaWEp2YjNSallXY3pMbU55YkRB

T0JnTlZIUThCQWY4RUJBTUNBUVl3RUFZS0tvWklodmRqWkFZQ0RnUUNCUUF3Q2dZSUtvWkl6

ajBFQXdJRFp3QXdaQUl3T3M5eWcxRVdtYkdHK3pYRFZzcGl2L1FYN2RrUGRVMmlqcjd4bklG

ZVFyZUorSmozbTFtZm1OVkJEWStkNmNMK0FqQXlMZFZFSWJDakJYZHNYZk00TzVCbi9SZDhM

Q0Z0bGsvR2NtbUNFbTlVK0hwOUc1bkxtd21KSVdFR21ROEpraDBBQURHQ0FZa3dnZ0dGQWdF

Qk1JR0dNSG94TGpBc0JnTlZCQU1NSlVGd2NHeGxJRUZ3Y0d4cFkyRjBhVzl1SUVsdWRHVm5j

bUYwYVc5dUlFTkJJQzBnUnpNeEpqQWtCZ05WQkFzTUhVRndjR3hsSUVObGNuUnBabWxqWVhS

cGIyNGdRWFYwYUc5eWFYUjVNUk13RVFZRFZRUUtEQXBCY0hCc1pTQkpibU11TVFzd0NRWURW

UVFHRXdKVlV3SUlUREJCU1ZHZFZEWXdDd1lKWUlaSUFXVURCQUlCb0lHVE1CZ0dDU3FHU0li

M0RRRUpBekVMQmdrcWhraUc5dzBCQndFd0hBWUpLb1pJaHZjTkFRa0ZNUThYRFRJek1EY3dN

ekUwTXpBeE1Wb3dLQVlKS29aSWh2Y05BUWswTVJzd0dUQUxCZ2xnaGtnQlpRTUVBZ0doQ2dZ

PUBLIC Page 33 of 74

Encoded Gateway API
Developer Guide

SUtvWkl6ajBFQXdJd0x3WUpLb1pJaHZjTkFRa0VNU0lFSU5SdVQ2UVpsd3VyU2lFeUFLSjZm

SjBSUnVqRXVzZUhTN3MrSXZLWk5zRHdNQW9HQ0NxR1NNNDlCQU1DQkVnd1JnSWhBTU93QUNj

dVdiYUMxd1kwdzhzYVhzVTlPczk0YSt3N080NTZ4SUo2T0M2Q0FpRUFvbHIzTHhxQXIzdjJI

R25SNlJVdmZyNjdYTE5IR01BVFE3ajF1UGx6VWprQUFBQUFBQUE9IiwiaGVhZGVyIjp7InB1

YmxpY0tleUhhc2giOiJrTmZhS0ZSOU9hZDV1ODB6T1lMY0s5Wld3NFQ1Wlk4WGRyb1U0bDhT

WTZrPSIsImVwaGVtZXJhbFB1YmxpY0tleSI6Ik1Ga3dFd1lIS29aSXpqMENBUVlJS29aSXpq

MERBUWNEUWdBRVU5NWptQllMQjdhR3ExWjdJeU1NVGJFNFBQWEtqNlE4eFo5SXZudXlzdXJy

SUdWdVVCV1UzSWxUK081eHFSQ3ZoOVNCV3hSeGc2UEswYWNlZWFMU09BPT0iLCJ0cmFuc2Fj

dGlvbklkIjoiYTVhMDBjZTU1NDIyMzdiZWRkZDUxMzEwOGI1ZDE0MjMyMjc2ZWJiMjM4ZGUw

MWQwZjgxNmNjZTQ0MjYzMGZmZCJ9LCJ2ZXJzaW9uIjoiRUNfdjEifSwicGF5bWVudE1ldGhv

ZCI6eyJkaXNwbGF5TmFtZSI6Ik1hc3RlckNhcmQgMDA0OSIsIm5ldHdvcmsiOiJNYXN0ZXJD

YXJkIiwidHlwZSI6ImNyZWRpdCJ9LCJ0cmFuc2FjdGlvbklkZW50aWZpZXIiOiJBNUEwMENF

NTU0MjIzN0JFRERENTEzMTA4QjVEMTQyMzIyNzZFQkIyMzhERTAxRDBGODE2Q0NFNDQyNjMw

RkZEIn0=

The ApplePayPayment object also can potentially contain billing and shipping data. If you
wish to use this data alongside the payment, you will need to convert the data returned into
the equivalent Encoded Gateway API fields and send them down as a part of the transaction
in the billingCustomer and shippingCustomer fields.

Submitting the Payment
You will then need to send this token, along the rest of your standard transaction fields, to
the Encoded Gateway as an apple_pay source.

An example pay action with the apple_pay source:

POST /transactions

{

"object": "transaction.request",

"action": "pay",

"ref": "trans-1234",

"amount": 20.54,

"currency": "GBP",

"source": {

"object": "source",

"apple_pay": {

"object":"apple_pay",

"token":

"dkwyOWpjM0F1WVhCd2JHVXVZMjl0TDI5amMzQXdOQzFoY0hCc1pXRnBZMkV6TURJd2dnRWR

CZ05WSFNBRWdnRVVNSUlCRURDQ0FRd0dDU3FHU0liM1kyUUZBVENCL2pDQnd3WUlLd1lCQlF

VSEFnSXdnYllNZ2JOU1pXeHBZVzVqWlNCdmJpQjBhR2x6SUdObGNuUnBabWxqWVhSbElHSjV

JR0Z1ZVNCd1lYSjBlU0JoYzNOMWJXVnpJR0ZqWTJWd2RHRnVZMlVnYjJZZ2RHaGxJSFJvWlc

PUBLIC Page 34 of 74

Encoded Gateway API
Developer Guide

0Z1lYQndiR2xqWVdKc1pTQnpkR0Z1WkdGeVpDQjBaWEp0Y3lCaGJtUWdZMjl1WkdsMGFXOXV

jeUJ2WmlCMWMyVXNJR05sY25ScFptbGpZWFJsSUhCdmJHbGplU0JoYm1RZ1kyVnlkR2xtYVd

OaGRHbHZiaUJ3Y21GamRHbGpaU0J6ZEdGMFpXMWxiblJ6TGpBMkJnZ3JCZ0VGQlFjQ0FSWXF

hSFIwY0RvdkwzZDNkeTVoY0hCc1pTNWpiMjB2WTJWeWRHbG1hV05oZEdWaGRYUm9iM0pwZEh

rdk1EUUdBMVVkSHdRdE1Dc3dLYUFub0NXR0kyaDBkSEE2THk5amNtd3VZWEJ3YkdVdVkyOXR

MMkZ3Y0d4bFlXbGpZVE11WTNKc01CMEdBMVVkRGdRV0JCU1VWOXR2MVhTQmhvbUpkaTkrVjR

VSDU1dFlKREFPQmdOVkhROEJBZjhFQkFNQ0I0QXdEd1lKS29aSWh2ZGpaQVlkQkFJRkFEQUt

CZ2dxaGtqT1BRUURBZ05KQURCR0FpRUF2Z2xYSCtjZUhuTmJWZVd2ckxUSEwrdEVYekFZVWl

MSEpSQUN0aDY5YjFVQ0lRRFJpelVLWGRiZGJyRjBZRFd4SHJMT2g4K2o1cTlzdllPQWlRM0l

MTjJxWXpDQ0F1NHdnZ0oxb0FNQ0FRSUNDRWx0TDc4Nm1OcVhNQW9HQ0NxR1NNNDlCQU1DTUd

jeEd6QVpCZ05WQkFNTUVrRndjR3hsSUZKdmIzUWdRMEVnTFNCSE16RW1NQ1FHQTFVRUN3d2R

RWEJ3YkdVZ1EyVnlkR2xtYVdOaGRHbHZiaUJCZFhSb2IzSnBkSGt4RXpBUkJnTlZCQW9NQ2t

Gd2NHeGxJRWx1WXk0eEN6QUpCZ05WQkFZVEFsVlRNQjRYRFRFME1EVXdOakl6TkRZek1Gb1h

EVEk1TURVd05qSXpORFl6TUZvd2VqRXVNQ3dHQTFVRUF3d2xRWEJ3YkdVZ1FYQndiR2xqWVh

ScGIyNGdTVzUwWldkeVlYUnBiMjRnUTBFZ0xTQkhNekVtTUNRR0ExVUVDd3dkUVhCd2JHVWd

RMlZ5ZEdsbWFXTmhkR2x2YmlCQmRYUm9iM0pwZEhreEV6QVJCZ05WQkFvTUNrRndjR3hsSUV

sdVl5NHhDekFKQmdOVkJBWVRBbFZUTUZrd0V3WUhLb1pJemowQ0FRWUlLb1pJemowREFRY0R

RZ0FFOEJjUmhCblhaSVhWR2w0bGdRZDI2SUNpNzk1N3JrM2dqZnhMaytFelZ0Vm1Xeld1SXR

DWGRnMGlUbnU2Q1AxMkY4Nkl5M2E3Wm5DK3lPZ3BoUDlVUmFPQjl6Q0I5REJHQmdnckJnRUZ

CUWNCQVFRNk1EZ3dOZ1lJS3dZQkJRVUhNQUdHS21oMGRIQTZMeTl2WTNOd0xtRndjR3hsTG1

OdmJTOXZZM053TURRdFlYQndiR1Z5YjI5MFkyRm5NekFkQmdOVkhRNEVGZ1FVSS9KSnhFK1Q

1TzhuNXNUMktHdy9vcnY5TGtzd0R3WURWUjBUQVFIL0JBVXdBd0VCL3pBZkJnTlZIU01FR0R

BV2dCUzdzTjZoV0RPSW1xU0ttZDYrdmV1djJzc2txekEzQmdOVkhSOEVNREF1TUN5Z0txQW9

oaVpvZEhSd09pOHZZM0pzTG1Gd2NHeGxMbU52YlM5aGNIQnNaWEp2YjNSallXY3pMbU55YkR

BT0JnTlZIUThCQWY4RUJBTUNBUVl3RUFZS0tvWklodmRqWkFZQ0RnUUNCUUF3Q2dZSUtvWkl

6ajBFQXdJRFp3QXdaQUl3T3M5eWcxRVdtYkdHK3pYRFZzcGl2L1FYN2RrUGRVMmlqcjd4bkl

GZVFyZUorSmozbTFtZm1OVkJEWStkNmNMK0FqQXlMZFZFSWJDakJYZHNYZk00TzVCbi9SZDh

MQ0Z0bGsvR2NtbUNFbTlVK0hwOUc1bkxtd21KSVdFR21ROEpraDBBQURHQ0FZa3dnZ0dGQWd

FQk1JR0dNSG94TGpBc0JnTlZCQU1NSlVGd2NHeGxJRUZ3Y0d4cFkyRjBhVzl1SUVsdWRHVm5

jbUYwYVc5dUlFTkJJQzBnUnpNeEpqQWtCZ05WQkFzTUhVRndjR3hsSUVObGNuUnBabWxqWVh

ScGIyNGdRWFYwYUc5eWFYUjVNUk13RVFZRFZRUUtEQXBCY0hCc1pTQkpibU11TVFzd0NRWUR

WUVFHRXdKVlV3SUlUREJCU1ZHZFZEWXdDd1lKWUlaSUFXVURCQUlCb0lHVE1CZ0dDU3FHU0l

iM0RRRUpBekVMQmdrcWhraUc5dzBCQndFd0hBWUpLb1pJaHZjTkFRa0ZNUThYRFRJek1EY3d

NekUwTXpBeE1Wb3dLQVlKS29aSWh2Y05BUWswTVJzd0dUQUxCZ2xnaGtnQlpRTUVBZ0doQ2d

ZSUtvWkl6ajBFQXdJd0x3WUpLb1pJaHZjTkFRa0VNU0lFSU5SdVQ2UVpsd3VyU2lFeUFLSjZ

mSjBSUnVqRXVzZUhTN3MrSXZLWk5zRHdNQW9HQ0NxR1NNNDlCQU1DQkVnd1JnSWhBTU93QUN

jdVdiYUMxd1kwdzhzYVhzVTlPczk0YSt3N080NTZ4SUo2T0M2Q0FpRUFvbHIzTHhxQXIzdjJ

IR25SNlJVdmZyNjdYTE5IR01BVFE3ajF1UGx6VWprQUFBQUFBQUE9IiwiaGVhZGVyIjp7InB

1YmxpY0tleUhhc2giOiJrTmZhS0ZSOU9hZDV1ODB6T1lMY0s5Wld3NFQ1Wlk4WGRyb1U0bDh

TWTZrPSIsImVwaGVtZXJhbFB1YmxpY0tleSI6Ik1Ga3dFd1lIS29aSXpqMENBUVlJS29aSXp

qMERBUWNEUWdBRVU5NWptQllMQjdhR3ExWjdJeU1NVGJFNFBQWEtqNlE4eFo5SXZudXlzdXJ

ySUdWdVVCV1UzSWxUK081eHFSQ3ZoOVNCV3hSeGc2UEswYWNlZWFMU09BPT0iLCJ0cmFuc2F

jdGlvbklkIjoiYTVhMDBjZTU1NDIyMzdiZWRkZDUxMzEwOGI1ZDE0MjMyMjc2ZWJiMjM4ZGU

PUBLIC Page 35 of 74

Encoded Gateway API
Developer Guide

wMWQwZjgxNmNjZTQ0MjYzMGZmZCJ9LCJ2ZXJzaW9uIjoiRUNfdjEifSwicGF5bWVudE1ldGh

vZCI6eyJkaXNwbGF5TmFtZSI6Ik1hc3RlckNhcmQgMDA0OSIsIm5ldHdvcmsiOiJNYXN0ZXJ

DYXJkIiwidHlwZSI6ImNyZWRpdCJ9LCJ0cmFuc2FjdGlvbklkZW50aWZpZXIiOiJBNUEwMEN

FNTU0MjIzN0JFRERENTEzMTA4QjVEMTQyMzIyNzZFQkIyMzhERTAxRDBGODE2Q0NFNDQyNjM

wRkZEIn0="

}

}

}

Google Pay™
Google Pay is the fast, simple way to pay on sites, in apps, and in stores using the cards
saved to your Google Account.

Google Pay makes it easy for your customers to complete their purchase on your checkout.
A customer with a compatible mobile device or web browser can be offered Google Pay as a
payment option, quickly and easily selecting the cards already saved within their Google Pay
account.

Checkout Implementation
Please see the Google Pay API documentation for information on how to integrate Google
Pay into your checkout.

Android

● Android Developer Documentation
● Android Integration Checklist
● Android Brand Guidelines

Web

● Web Developer Documentation
● Web Integration Checklist
● Web Brand Guidelines

Using the Google Pay API
When requesting a payment token for your payment provider, you must set the type to
‘PAYMENT_GATEWAY’, the gateway to ‘encoded’, and the gatewayMerchantId to your
Client ID for the Encoded Gateway.

const tokenizationSpecification = {

type: 'PAYMENT_GATEWAY',

PUBLIC Page 36 of 74

https://developers.google.com/pay/api/android/overview
https://developers.google.com/pay/api/android/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/android/guides/brand-guidelines
https://developers.google.com/pay/api/web/overview
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/web/guides/brand-guidelines
https://developers.google.com/pay/api/web/guides/tutorial#tokenization

Encoded Gateway API
Developer Guide

parameters: {

'gateway': 'encoded',

'gatewayMerchantId': 'ENCODED_GATEWAY_CLIENT_ID'

}

}

You will also need to define the card networks accepted by your site. Encoded currently
supports VISA, MASTERCARD and AMEX.

const allowedCardNetworks = ["AMEX", "MASTERCARD", "VISA"];

You will also need to define which authentication methods are accepted by your site.
Encoded currently supports both PAN_ONLY and CRYPTOGRAM_3DS:

const allowedCardAuthMethods = ["PAN_ONLY", "CRYPTOGRAM_3DS"];

Receiving the Payment Token from Google Pay
Once your checkout has completed the Google Pay process, an encrypted payload will be
returned to your application in the PaymentData response. The following fields will need to
be sent to the Encoded Gateway:

paymentData.paymentMethodData.tokenizationData.token

An example of the value contained in this field is below:

{

"protocolVersion":"ECv2",

"signature":"MEUCIG39tbaQPwJe28U+UMsJmxUBUWSkwlOv9Ibohacer+CoAiEA8Wuq3lL

UCwLQ06D2kErxaMg3b/oLDFbd2gcFze1zDqU\u003d",

"intermediateSigningKey":{

"signedKey":

"{\"keyExpiration\":\"1542394027316\",\"keyValue\":\"MFkwEwYHKoZIzj0CAQY

IKoZIzj0DAQcDQgAE/1+3HBVSbdv+j7NaArdgMyoSAM43yRydzqdg1TxodSzA96Dj4Mc1EiK

roxxunavVIvdxGnJeFViTzFvzFRxyCw\\u003d\\u003d\"}",

"signatures":

["MEYCIQDcXCoB4fYJF3EolxrE2zB+7THZCfKA7cWxSztKceXTCgIhAN/d5eBgx/1A6qKBdH

0IS7/aQ7dO4MuEt26OrLCUxZnl"]

},

"signedMessage":"{\"tag\":\"TjkIKzIOvCrFvjf7/aeeL8/FZJ3tigaNnerag68hIaw\

PUBLIC Page 37 of 74

https://developers.google.com/pay/api/web/guides/tutorial#supported-card-networks

Encoded Gateway API
Developer Guide

\u003d\",\"ephemeralPublicKey\":\"BLJoTmxP2z7M2N6JmaN786aJcT/L/OJfuJKQdI

XcceuBBZ00sf5nm2+snxAJxeJ4HYFTdNH4MOJrH58GNDJ9lJw\\u003d\",\"encryptedMe

ssage\":\"mleAf23XkKjj\"}"

}

You must base64 this value prior to sending to Encoded. Example below:

ewogICJwcm90b2NvbFZlcnNpb24iOiJFQ3YyIiwKInNpZ25hdHVyZSI6Ik1FVUNJRzM5dGJh

UVB3SmUyOFUrVU1zSm14VUJVV1Nrd2xPdjlJYm9oYWNlcitDb0FpRUE4V3VxM2xMVUN3TFEw

NkQya0VyeGFNZzNiL29MREZiZDJnY0Z6ZTF6RHFVXHUwMDNkIiwKICAiaW50ZXJtZWRpYXRl

U2lnbmluZ0tleSI6ewogICAgInNpZ25lZEtleSI6ICJ7XCJrZXlFeHBpcmF0aW9uXCI6XCIx

NTQyMzk0MDI3MzE2XCIsXCJrZXlWYWx1ZVwiOlwiTUZrd0V3WUhLb1pJemowQ0FRWUlLb1pJ

emowREFRY0RRZ0FFLzErM0hCVlNiZHYrajdOYUFyZGdNeW9TQU00M3lSeWR6cWRnMVR4b2RT

ekE5NkRqNE1jMUVpS3JveHh1bmF2Vkl2ZHhHbkplRlZpVHpGdnpGUnh5Q3dcXHUwMDNkXFx1

MDAzZFwifSIsCiAgICAic2lnbmF0dXJlcyI6IFsiTUVZQ0lRRGNYQ29CNGZZSkYzRW9seHJF

MnpCKzdUSFpDZktBN2NXeFN6dEtjZVhUQ2dJaEFOL2Q1ZUJneC8xQTZxS0JkSDBJUzcvYVE3

ZE80TXVFdDI2T3JMQ1V4Wm5sIl0KICB9LAogICJzaWduZWRNZXNzYWdlIjoie1widGFnXCI6

XCJUamtJS3pJT3ZDckZ2amY3L2FlZUw4L0ZaSjN0aWdhTm5lcmFnNjhoSWF3XFx1MDAzZFwi

LFwiZXBoZW1lcmFsUHVibGljS2V5XCI6XCJCTEpvVG14UDJ6N00yTjZKbWFONzg2YUpjVC9M

L09KZnVKS1FkSVhjY2V1QkJaMDBzZjVubTIrc254QUp4ZUo0SFlGVGROSDRNT0pySDU4R05E

SjlsSndcXHUwMDNkXCIsXCJlbmNyeXB0ZWRNZXNzYWdlXCI6XCJtbGVBZjIzWGtLampcIn0i

Cn0=

Submitting the Payment
You will then need to send this token, along the rest of your standard transaction fields, to
the Encoded Gateway as a google_pay source.

An example pay action with the google_pay source:

POST /transactions

{

"object": "transaction.request",

"action": "pay",

"ref": "trans-1234",

"amount": 20.54,

"currency": "GBP",

"source": {

"object": "source",

"google_pay": {

PUBLIC Page 38 of 74

Encoded Gateway API
Developer Guide

"object":"google_pay",

"token":

"ewogICJwcm90b2NvbFZlcnNpb24iOiJFQ3YyIiwKICAic2lnbmF0dXJlIjoiTUVRQ0lINlE

0T3dRMGpBY2VGRWtHRjBKSUQ2c0pOWHhPRWk0cittQTdiaVJ4cUJRQWlBb25kcW9VcFUvYmR

zckFPcFpJc3JIUVM5bndpaU53T3JyMjRSeVBlSEEwUVx1MDAzZFx1MDAzZCIsCiAgImludGV

ybWVkaWF0ZVNpZ25pbmdLZXkiOnsKICAgICJzaWduZWRLZXkiOiAie1wia2V5RXhwaXJhdGl

vblwiOlwiMTU0MjMyMzM5MzE0N1wiLFwia2V5VmFsdWVcIjpcIk1Ga3dFd1lIS29aSXpqMEN

BUVlJS29aSXpqMERBUWNEUWdBRS8xKzNIQlZTYmR2K2o3TmFBcmRnTXlvU0FNNDN5UnlkenF

kZzFUeG9kU3pBOTZEajRNYzFFaUtyb3h4dW5hdlZJdmR4R25KZUZWaVR6RnZ6RlJ4eUN3XFx

1MDAzZFxcdTAwM2RcIn0iLAogICAgInNpZ25hdHVyZXMiOiBbIk1FWUNJUUNPMkVJaTQ4czh

WVEgraWxNRXBvWExGZmt4QXdIamZQU0NWRUQvUURTSG1RSWhBTExKbXJVbE5BWThoRFFSVi9

5MWlLWkdzV3BlTm1JUCt6K3RDUUhReFAwdiJdCiAgfSwKICAic2lnbmVkTWVzc2FnZSI6Int

cInRhZ1wiOlwianBHejFGMUJjb2kvZkNOeEk5bjdRcnN3N2k3S0hyR3RUZjNOclJjbHQrVVx

cdTAwM2RcIixcImVwaGVtZXJhbFB1YmxpY0tleVwiOlwiQkphdHlGdkZQUEQyMWw4L3VMUDQ

2VGExaHNLSG5kZjhaK3RBZ2srREVQUWdZVGtoSHkxOWNGM2gvYlhzMHRXVG1adG5ObSt2bFZ

yS2JSVTlLOCs3Y1pzXFx1MDAzZFwiLFwiZW5jcnlwdGVkTWVzc2FnZVwiOlwibUtPb1h3aTh

PYXZaXCJ9Igp9"

}

}

}

If you have chosen PAN_ONLY as an allowed authentication method, then you may receive
a challenge response following the transaction request. Please see the EMV 3-D Secure
(3DS2) section for details on how to deal with a 3DS2 challenge response.

PUBLIC Page 39 of 74

Encoded Gateway API
Developer Guide

EMV 3-D Secure (3DS2)
3DS2 provides many improvements over 3DS1 and provides additional assurances around
the identity of the cardholder, protecting both merchants and cardholders from credit and
debit card fraud. 3DS2 works by taking the cardholder through a number of different types of
authentication flows based on the perceived risk of the transactions.

The Gateway API will determine the correct 3DS version to perform based on the
configuration of the merchant account.

3DS2 is performed in a similar manner to 3DS1, through a number of steps:

1. Initiate 3D Secure Transaction
A transaction is initiated with the platformType field set to “ecom” and the
threeDSecure field set to true.

2. Receive Challenge
The Gateway API responds to a transaction request with a 3DS2 challenge.

3. Redirect to ACS
The implementer redirects the cardholder’s browser to the Gateway API Access
Control Server (ACS) for the URL provided. The ACS will then potentially take the
cardholder through a number of challenges.

4. Process ACS Response
The ACS will redirect the cardholder’s browser back to the implementer who must
process the authentication response.

5. Send Challenge Response
The implementer sends the information received from the ACS in the authentication
response to the Gateway API. The transaction will then continue to be processed.

Initiate 3D Secure Transaction
A transaction is performed with the platformType set to “ecom” and the threeDSecure field
set to true.

POST /transactions

{

"object": "transaction.request",

"action": "authorise",

"ref": "trans-1234",

"amount": 20.54,

"currency": "GBP",

"platformType": "ecom",

"threeDSecure": true,

PUBLIC Page 40 of 74

Encoded Gateway API
Developer Guide

"source": {

"object": "source",

"card": {

"object": "card",

"pan": "4444333322221111",

"expiry": "2022-10",

"securityCode": "111"

}

}

}

Receive Challenge
When a supported transaction is initiated and the merchant account is configured for
e-commerce transactions and 3DS2, the Gateway API may respond to the transaction
request with a challenge via the transaction.challenge object. The challenge object (if a 3DS
challenge) will contain all of the information required to send to the Gateway API ACS.
Below is an example response that includes a 3DS2 challenge:

{

"object": "transaction",

"id": "4b502950-8801-4112-ba15-88f8eb280525",

"creationDate": "2020-07-01T00:00:00Z",

"status": "challenged",

"challenge": {

"object": "transaction.challenge",

"id": "1",

"threeDSecure": {

"object": "transaction.challenge.threeDSecure",

"v2": {

"object": "transaction.challenge.threeDSecure.v2",

"acsUrl":

"https://sit.encoded.services/emv3ds/acs/init/4b502950-8801-4112-ba15-88

f8eb280525"

}

},

"links": {

"self":

"https://sit.encoded.services/api/v1/transactions/4b502950-8801-4112-ba1

5-88f8eb280525/challenge/1"

}

PUBLIC Page 41 of 74

Encoded Gateway API
Developer Guide

},

"attributes": {},

"links": {

"self":

"https://sit.encoded.services/api/v1/transactions/d9d97dd1-d12b-4071-97c

7-ab8c7022dad6"

}

}

In the example above, the transaction has returned with a status of challenged. The
challenge itself is contained within the challenge object. The challenge object contains a
threeDSecure.v2 object which contains the fields necessary to perform the 3DSecure
authentication. These are:

● acsUrl
The URL of the Gateway API Access Control Server (ACS). The implementer will
perform a POST to this URL within the cardholder’s browser.

Redirect to ACS
The implementer must redirect the cardholder's browser to the Gateway API Access Control
Server at the URL provided. The implementer must provide the callback URL for the ACS to
send the authentication response to once the process is complete. This is provided as part
of the POST request, with the name returnUrl. Additionally, the implementer may provider
the size of the challenge window. This is provided as part of the POST request with the
name challengeWindowSize.

Below is an example form that can be constructed by the implementer to perform the
redirection to the Gateway API ACS:

<form name="3dsRedirect"

action="https://sit.encoded.services/emv3ds/acs/init/4b502950-8801-4112-

ba15-88f8eb280525"

method="POST"

accept-charset="UTF-8">

<input type="hidden"

name="returnUrl"

value="https://implementer.com/3ds/callback"/>

<input type="hidden"

name="challengeWindowSize"

value="05"/>

<input type="submit" value="Click here to continue" class="button">

PUBLIC Page 42 of 74

Encoded Gateway API
Developer Guide

</form>

Process ACS Response
Once the authentication process at the Gateway API ACS is complete, the ACS will return
an authentication response to the URL provided in the returnUrl field, as a HTTP Post. The
fields returned will include:

● dsTransId
A unique ID to reference the authorisation attempt.

● authenticationValue
The authentication value provided by the ACS.

● eci
The electronic commerce indicator.

● transStatus
The status of the authorisation attempt.

● messageVersion
The 3DS2 message version.

Send Challenge Response
When the challenge was made, the transaction.challenge object contained a link to the
challenge response endpoint. The implementer will send a challenge response object to this
endpoint, containing the information received from the ACS, as in the example below:

POST /transactions/4b502950-8801-4112-ba15-88f8eb280525/challenge/1

{

"object": "transaction.challenge.response",

"threeDSecure": {

"object": "transaction.challenge.response.threeDSecure",

"v2": {

"object": "transaction.challenge.response.threeDSecure.v2",

"dsTransId": "8b167401-2c2e-4f5c-80e0-6dcbf68737cd",

"authenticationValue": "MTIzNDU2Nzg5MDEyMzQ1OTcyODM=",

"eci": "05",

"transStatus": "Y",

"messageVersion": "2.2.0"

}

}

}

PUBLIC Page 43 of 74

Encoded Gateway API
Developer Guide

The challenge endpoint will then respond with a transaction object, as if we had just sent a
transaction request to the Gateway API. The transaction returned will likely have a
transaction.status of processed and will contain a transaction.response object.

Multiple Challenges
In some circumstances, the transaction returned will again have a transaction.status of
challenged. This indicates that an additional challenge has been requested. This can occur
in situations where the issuer has initially performed a 3DS2 frictionless flow, but following
the transaction request being sent has subsequently decided to escalate the transaction and
request a 3DS2 challenge flow. You should code your implementation accordingly to account
for potentially multiple challenge requests.

In the above instance, the transaction.challenge field will contain the most recent challenge
object. The transaction.challenges field contains an array of all challenges that have been
issued during the life of the transaction.

PUBLIC Page 44 of 74

Encoded Gateway API
Developer Guide

Hosted Payment Pages
Hosted Payment Pages provide a simple solution for accepting card payments, by providing
a drop-in payment form that can handle all aspects of the transaction process on the
frontend with little development resource required by the implementer. The solution is also
eligible for the lowest level of PCI Compliance - SAQ-A.

Hosted Payment Pages work by using the Gateway API to create an Order, which provides
a URL to a hosted payment page capable of presenting the ecom user with all available
payment methods, and handling all aspects of the transaction.

Create an Order
The Gateway API will be used to create an Order. This allows the order details to be
provided ahead of any transaction being performed, and sets the payment amount, currency,
billing customer information, and any required Hosted Payment Pages configuration.

The Hosted Payment Pages configuration can be provided as part of the Order creation,
setting the action and returnUrl, as well as any configuration required to handle tokens.

If no action is supplied, pay is used as the default action.

Tokenisation
In order to support Tokens, you must provide a valid Customer Object in the billingCustomer
field that has associated Tokens, along with a hpp.tokens Object as part of the Hosted
Payment Pages configuration.

The tokens.enabled field sets whether any current tokens should be displayed to the user as
a valid payment method.

The tokens.tokenisation field should be provided with a Tokenisation Object, and setting this
will provide the user with the option to save their card details for future use when making a
new card transaction.

Example
Below is an example request and response. Only the pertinent information required in the
Order object has been shown.

Request:

PUBLIC Page 45 of 74

Encoded Gateway API
Developer Guide

POST /orders

{

"object":"order",

"ref":"ORD-0372837",

"description":"Payment Order",

"currency":"GBP",

"totalAmount":9.60,

"billingCustomer":{

"object":"customer",

"id":"3fa85f64-5717-4562-b3fc-2c963f66afa6"

},

"hpp":{

"action": "authorise",

"returnUrl":"https://myurl.com/ecom-response",

"tokens":{

"enabled":true,

"tokenisation":{

"object":"tokenisation",

"agreement":"card_on_file",

"ref":"token-1234"

}

}

}

}

Response:

{

"object":"order",

"id":"3fa85f64-5717-4562-b3fc-2c963f66afa6",

"creationDate":"2019-07-01T00:00:00Z",

"ref":"ORD-0372837",

"description":"Payment Order",

"currency":"GBP",

"totalAmount":9.60,

"billingCustomer":{

"object":"customer",

"id":"3fa85f64-5717-4562-b3fc-2c963f66afa6",

"creationDate":"2019-07-01T00:00:00Z",

"ref":"CUST-0094637",

PUBLIC Page 46 of 74

Encoded Gateway API
Developer Guide

"title":"Mr",

"forename":"John",

"surname":"Doe",

"dateOfBirth":"1985-07-01",

"contact":{

"object":"contact",

"address":{

"object":"address",

"title":"Mr",

"forename":"John",

"surname":"Doe",

"postcode":"AB1 2CD",

"country":"GBR"

},

"email":"email@example.com"

},

"links":{

"self":"https://sit.encoded.services/api/v1/customers/96d7d98a-46fd-4d3b

-a15b-b03c116ae949",

"tokens":"https://sit.encoded.services/api/v1/customers/96d7d98a-46fd-4d

3b-a15b-b03c116ae949/tokens"

}

},

"hpp":{

"action": "authorise",

"returnUrl":"https://myurl.com/ecom-response",

"tokens":{

"enabled":true,

"tokenisation":{

"object":"tokenisation",

"agreement":"card_on_file",

"ref":"token-1234"

}

}

},

"links":{

"self":"https://sit.encoded.services/api/v1/orders/96d7d98a-46fd-4d3b-a1

5b-b03c116ae949",

"hpp":{

PUBLIC Page 47 of 74

Encoded Gateway API
Developer Guide

"v1":"https://sit.encoded.services/hpp/v1/96d7d98a-46fd-4d3b-a15b-b03c11

6ae949"

}

}

}

Displaying the Hosted Payment Page
The order will respond with a URL in the links.hpp.v1 field. This URL is the access URL for
the Hosted Payment Page specifically created and configured for this Order.

This URL will likely be opened within an iframe embedded on the parent page, and will be
responsible for displaying the available payment methods to the user, collecting payment
information, and processing the transaction.

Below is an example HTML page containing the Hosted Payment Page.

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Payment Form</title>

</head>

<body>

<iframe

src="https://sit.encoded.services/hpp/v1/96d7d98a-46fd-4d3b-a15b-b03c116ae949"

frameborder="0"

width="700"

height="500"

style="overflow:hidden"

sandbox="allow-top-navigation allow-scripts allow-forms"></iframe>

</body>

</html>

Note that the sandbox attribute has been set on the iframe element, and allows
allow-top-navigation. This allows the returnUrl callbacks to be targeted at the top page.

Handling The Response
Once the user has completed the transaction, a HTTP POST call-back will be performed to
the returnUrl provided. The POST will contain the following form fields:

PUBLIC Page 48 of 74

Encoded Gateway API
Developer Guide

Field Name Field Values Notes

orderId The ID of the Order that was
processed.

This can be used to tie up the call-back
with the Order ID provided when creating
the Order in the server back-end.

transactionId The ID of the Transaction
that was processed.

This can be used to look-up all additional
information relating to the transaction via
the Gateway API.

result One of:
● accepted
● declined
● error

authCode If accepted, the
authorisation code of the
transaction.

This is a reference that can be displayed
to the user, and that can be provided back
to their issuing bank if required.

tokenId The ID of any token that
may have been created as
part of this transaction.

Supplied only if a token was created as
part of this transaction. Allows additional
token management steps to be
performed.

If further information is required, a lookup can be performed against the Gateway API for the
full transaction details. See Transactions for more information.

The implementer should display an appropriate page to the user to inform them of the result
of the transaction and provide any further information that may be required.

Token Management
The tokenId field indicates whether a Token was created as part of this transaction and
supplied the ID of the created Token. This is useful if the implementer wants to perform
additional token management functionality.

For example, if a Customer may only have one active Token on their account, the
implementer may wish to use the Gateway API to remove any previously held tokens.

PUBLIC Page 49 of 74

Encoded Gateway API
Developer Guide

Hosted Payment Fields
In order to be eligible for the lowest level of PCI Compliance - SAQ-A - a payment form must
have all elements of the payment page hosted securely by a third-party Level 1 PCI DSS
Compliant Service Provider.

It is not enough to simply POST the card details to the service provider. If any part of the
page can be modified in any way to intercept or interrupt the gathering and submission of the
card details, then the payment form will fall under SAQ-AEP, a far more stringent set of
requirements.

An iframe provides a suitable level of protection for the payment form to comply with SAQ-A,
but provides a reduced experience for usability and flexibility to the implementers. An iframe
may not fit in with the existing user interface, and may not provide the flexibility required to
accept additional fields at the same time.

Hosted Payment Fields attempts to bridge the gap between compliance, and the usability
and flexibility of the payment form, by rendering each individual input in its own iframe. This
allows much more flexibility for implementers to style their payment forms whilst not having
to worry about dealing with sensitive card details.

Generating a Payment Session
The Gateway API will be used to create a Payment Session. This provides a Session ID
which can be used to collect card details via various methods, and then complete the
transaction via the Gateway API.

When creating a Payment Session, the fields which will make up the payment session can
be specified. This is useful for situations where you may not require all of the fields, for
example when collecting only the stored card to use alongside a token object. Below shows
an example payment session being created for all available fields.

Request:

HTTP POST https://sit.encoded.services/api/v1/sessions

{

"object": "session",

"fields": ["pan", "expiryDate", "securityCode"]

}

Response:

{

"object": "session",

PUBLIC Page 50 of 74

Encoded Gateway API
Developer Guide

"id": "10b3ca21-d9fd-4030-b5f5-fb45f220a6dd",

"creationDate": "2020-09-24T09:43:18.625Z",

"lastUpdated": "2020-09-24T09:43:18.625Z",

"sessionFields": [

{

"object": "sessionField",

"name": "pan",

"value": "",

"state": "unset",

"selected": false,

"additionalParams": {},

"links": {

"iframeURL":

"https://sit.encoded.services/hpf/v1/10b3ca21-d9fd-4030-b5f5-fb45f220a6dd/pan"

}

},

{

"object": "sessionField",

"name": "expiryDate",

"value": "",

"state": "unset",

"selected": false,

"additionalParams": {},

"links": {

"iframeURL":

"https://sit.encoded.services/hpf/v1/10b3ca21-d9fd-4030-b5f5-fb45f220a6dd/expiryDate"

}

},

{

"object": "sessionField",

"name": "securityCode",

"value": "",

"state": "unset",

"selected": false,

"additionalParams": {},

"links": {

"iframeURL":

"https://sit.encoded.services/hpf/v1/10b3ca21-d9fd-4030-b5f5-fb45f220a6dd/securityCode"

}

}

]

}

The response returned provides all of the details currently for this session. The Session ID
(returned as the id field) is required to use Hosted Payment Fields. Once the Session ID has
been generated, this can then be used in the next step to generate the Hosted Payment
Field iframes via a Javascript library.

PUBLIC Page 51 of 74

Encoded Gateway API
Developer Guide

Generate a Session Limited JWT
You must then generate a Session Limited JWT that is safe to send to the browser to
initialise the Hosted Payment Fields Javascript. See Authentication for Hosted Payment
Fields for details.

Generate the Hosted Payment Fields
Hosted Payment Fields are applied to an existing HTML payment form by using Javascript to
generate the iframes and apply them to existing <div> containers in the payment form.

A Javascript module is provided by Encoded which creates, initialises and interacts with the
Hosted Payment Fields. The latest version is available at:

https://[env].encoded.services/assets/js/hpf/hpf-2.1.0.min.js

Here is an example basic HTML payment form with Hosted Payment Fields:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Payment Form</title>

<script src="https://sit.encoded.services/assets/js/hpf/hpf-2.1.0.min.js"></script>

<script>

HostedPaymentFields.initialise(JWT_AUTH_TOKEN, {

sessionId: "10b3ca21-d9fd-4030-b5f5-fb45f220a6dd",

form: {

id: "payment-form",

fields: {

pan: {

id: "pan"

},

expiry: {

id: "expiry"

},

securityCode: {

id: "securityCode"

}

}

},

onEvent: function (event) {

// Handle the event

}

PUBLIC Page 52 of 74

Encoded Gateway API
Developer Guide

});

</script>

</head>

<body>

<form id="payment-form" action="/make-payment" method="post">

<label for="pan">Card Number</label>

<div id="pan"></div>

<label for="expiry">Expiry Date</label>

<div id="expiry"></div>

<label for="securityCode">Security Code</label>

<div id="securityCode"></div>

<input type="submit" value="Make Payment" />

</form>

</body>

</html>

The Hosted Payment Fields Javascript module will generate an iframe containing the correct
input element within each of the <div> containers.

Interact with the Hosted Payment Fields
The Hosted Payment Fields Javascript modules will generate and dispatch synthetic events,
which are used to provide the implementer with real-time feedback. This is the primary
mechanism with which the implementer can update the frontend in response to input being
entered by the user and validated by the Hosted Payment Fields client.

All events dispatched use jQuery event namespace notation, with a namespace of
encodedHpf. So as an example, for the initialisationStart event below, the type field of the
Event object would be initialisationStart.encodedHpf.

A full list of events can be found at Appendix 1 - Hosted Payment Fields Events.

Below is a sample of JS to add an event listener for a specific synthetic event.

document.addEventListener('fieldStatusChange.encodedHpf', function(theEvent) {

var target = theEvent.target;

var detail = theEvent.detail;

// Add code here.

});

PUBLIC Page 53 of 74

Encoded Gateway API
Developer Guide

Sync Hosted Payment Fields with the Payment Session
At the point where you are ready to perform the transaction - once all fields have been
completed by the user and have passed validation - the Hosted Payment Fields must be
synced to ensure that the card data is saved against the Payment Session generated.

To do this, you must generate and dispatch a synthetic event from the payment form element
supplied when initialising the Hosted Payment Fields, which will be received by the
Javascript module, and will trigger the sync process. You may wish to perform this action
once the payment form’s Submit button has been clicked by the user.

For more information about this event, please refer to the paymentSessionSyncRequest in
Appendix 1 - Hosted Payment Fields Events.

Below is a sample of JS for generating and dispatching the event:

const syncRequest = new CustomEvent('paymentSessionSyncRequest.encodedHpf');

document.getElementById('payment-form').dispatchEvent(syncRequest);

You will then receive events to provide feedback on the sync process. If the Payment
Session sync was successful, you may then submit the payment.

Submitting the Payment
The Gateway API will then be used to perform the transaction in the normal way, supplying
the Session ID as the source of the transaction.

POST /transactions

{

"object": "transaction.request",

"action": "pay",

"amount": 1.00,

"currency": "GBP",

"source": {

"object": "source",

"session": {

"object": "session",

"id": "10b3ca21-d9fd-4030-b5f5-fb45f220a6dd"

}

},

"billingCustomer": {

"object": "customer",

"forename": "test"

}

}

PUBLIC Page 54 of 74

Encoded Gateway API
Developer Guide

Which provides the following response:

{

"object": "transaction",

"id": "b015dd96-a8e5-46e1-b390-af39d0b93960",

"creationDate": "2020-09-24T10:14:20Z",

"status": "processed",

"request": {

"object": "transaction.request",

"id": "700ff349-4038-4063-ad45-715ce9d8a48c",

"creationDate": "2020-09-24T10:14:20Z",

"action": "pay",

"order": {

"object": "order",

"id": "b13dcdd5-c4c1-4b55-bf8c-9628ff2f5ac5",

"creationDate": "2020-09-24T10:14:21Z",

"ref": "b13dcdd5-c4c1-4b55-bf8c-9628ff2f5ac5",

"currency": "GBP",

"totalAmount": 1.00,

"pendingAmount": 0.00,

"billingCustomer": {

"object": "customer",

"id": "c92edae3-7c45-445e-9e56-c5d8a0bde52c",

"links": {

"self":

"https://sit.encoded.services/api/v1/customers/c92edae3-7c45-445e-9e56-c5d8a0bde52c"

}

},

"links": {

"self":

"https://sit.encoded.services/api/v1/orders/b13dcdd5-c4c1-4b55-bf8c-9628ff2f5ac5"

}

},

"currency": "GBP",

"amount": 1.00,

"source": {

"object": "source"

},

"billingCustomer": {

"object": "customer",

"id": "c92edae3-7c45-445e-9e56-c5d8a0bde52c",

"links": {

"self":

"https://sit.encoded.services/api/v1/customers/c92edae3-7c45-445e-9e56-c5d8a0bde52c"

}

},

"links": {

"self":

"https://sit.encoded.services/api/v1/transactions/b015dd96-a8e5-46e1-b390-af39d0b93960/r

PUBLIC Page 55 of 74

Encoded Gateway API
Developer Guide

equest"

}

},

"response": {

"object": "transaction.response",

"id": "913805d4-7ffa-46a8-a9fd-0a64b66c4e60",

"result": {

"object": "result",

"resultType": "accepted",

"resultCode": "APPROVED",

"message": "Approved"

},

"auth": {

"object": "auth",

"code": "006348",

"date": "2020-09-24T10:14:21.208Z"

}

},

"links": {

"self":

"https://sit.encoded.services/api/v1/transactions/b015dd96-a8e5-46e1-b390-af39d0b93960"

},

"attributes": {}

}

Styling
A number of styling options can be applied to the input elements within the generated iframe
via the Hosted Payments Fields JS.

Styles can be applied at multiple levels (either at the form level or the field level) and across
different statuses (to allow different stylings when a specific status is set for an input field).

Styles are cascading, so that more specific styles override more generic styles. For example,
if a grey background is set at the form level, and a white background set under the pan field,,
all input elements will have a grey background except for the pan input field, which will have
a white background.

The following is an example of the initialisation with styling elements included:

HostedPaymentFields.initialise(JWT_AUTH_TOKEN, {

sessionId: "10b3ca21-d9fd-4030-b5f5-fb45f220a6dd",

form: {

id: "payment-form",

fields: {

pan: {

PUBLIC Page 56 of 74

Encoded Gateway API
Developer Guide

id: "pan",

style: {

default: {

height: "30px"

}

}

},

expiry: {

id: "expiry",

style: {

default: {

height: "20px"

}

}

},

securityCode: {

id: "securityCode",

style: {

default: {

height: "20px"

}

}

}

},

style: {

default: {

font: {

family: "Tacoma, sans-serif",

size: "10px",

stretch: "normal",

weight: "normal",

style: "normal",

variant: "normal"

},

background: {

color: "transparent"

}

},

invalid: {

background: {

color: "red"

}

}

}

},

onEvent: function (event) {

// Handle the event

}

});

PUBLIC Page 57 of 74

Encoded Gateway API
Developer Guide

The following objects and properties exist:

Style

Property Type Description

default StatusStyle Styles applied by default. These styles are shown for all
statuses, unless specifically overridden by a specific
status’s style.

unset StatusStyle Styles applied to input elements with the “unset” status.

invalid StatusStyle Styles applied to input elements with the “invalid”
status.

valid StatusStyle Styles applied to input elements with the “valid” status.

StatusStyle

Property Type Description

background BackgroundStyle Styles applied to the background of the input
element.

color String The colour of the input element.

font FontStyle Styles applied to the font of the input element.

height String The height of the input element.

margin MarginPaddingStyle Styles applied to the margins of the input
element.

padding MarginPaddingStyle Styles applied to the padding of the input
element.

BackgroundStyle

Property Type Description

clip String The clip for the input element.

color String The colour of the input element.

FontStyle

Property Type Description

family String The font families for the input element.

PUBLIC Page 58 of 74

Encoded Gateway API
Developer Guide

size String The font size for the input element.

stretch String The font stretch for the input element.

style String The font style for the input element.

weight String The font weight for the input element.

variant String The font variants for the input element.

MarginPaddingStyle

Property Type Description

top String The top margin/padding for the input element.

right String The right margin/padding for the input element.

bottom String The bottom margin/padding for the input element.

left String The left margin/padding for the input element.

PUBLIC Page 59 of 74

Encoded Gateway API
Developer Guide

Notifications
To support asynchronous payment flows, a notification call-back can be provided once a
transaction has been processed. The notification call-back will be performed to a single URL
that can be set at either the account or user level.

The notification call-back will be sent as a HTTP POST request in JSON format to the
configured endpoint for either the account or user. An example notification is below:

{

"object": "notification",

"id": "9799936c-27be-432d-be84-e1249c7cac9e",

"creationDate": "2021-12-17T10:53:08Z",

"user": "Encoded1",

"environment": "prod",

"payload": {

"object": "transaction",

"id": "c7b66223-927d-41fd-afcc-a006d4cecb06"

...

},

"signature":

"OTA4ZTE1YjNkMzhjNzc4ODUyNTZkOGQ0ZDI5YjgzOTMzYjQ3MTQzM2EwYzNjZWFjZWUxZDE

zOTdmYmJhM2FhMQ=="

}

The notification call-back provides a Notification object, which contains the date that the
notification was performed, the user who performed the action that generated the call-back,
the environment that the action was performed on, and the payload of the notification (which
is usually the created object).

The Notification object also contains a signature, which is a SHA256 HMAC in Base64
representation. This is used to ensure that the notification received came from Encoded and
that the key information contained within has not been tampered with. Different payload
objects will have differing algorithms for calculating the HMAC signature, detailed below.

Transactions
Notification call-backs can be sent when a transaction has been processed. The resulting
payload will be the Transaction object.

The signature for this payload can be calculated as follows:

PUBLIC Page 60 of 74

Encoded Gateway API
Developer Guide

1. Create the string that will be hashed.

This can be done by combining the following fields from the Notification object and
Transaction object:

notification_id:user:environment:transaction_id:amount_in_decimal:c

urrency:resultType

From the above example, this would give us a string of:

9799936c-27be-432d-be84-e1249c7cac9e:Encoded1:prod:c7b66223-927d-4

1fd-afcc-a006d4cecb06:10.00:GBP:accepted

2. Perform a SHA256 HMAC on the created string, using the HMAC Key provided.

Assuming a secret key of ‘secret’, performing a SHA256 HMAC on the above string
would output:

908e15b3d38c77885256d8d4d29b83933b471433a0c3ceacee1d1397fbba3aa1

3. Encode the resulting string as Base64.

The above string encoded as Base64 would output:

OTA4ZTE1YjNkMzhjNzc4ODUyNTZkOGQ0ZDI5YjgzOTMzYjQ3MTQzM2EwYzNjZWFjZW

UxZDEzOTdmYmJhM2FhMQ==

4. Compare the computed string with the signature included in the Notification
object.

PUBLIC Page 61 of 74

Encoded Gateway API
Developer Guide

Address Verification Service
The Address Verification Service (AVS) is a security feature that compares the billing
address provided as part of the transaction request against the billing address details held
by the card issuer. The merchant account can be configured to automatically decline
transactions that have failed the AVS check.

In order to support AVS, a billingCustomer object must be provided as part of the transaction
request, and must contain at least the billingCustomer.contact.address.postcode field.

AVS is not supported by all acquirers or card issuers.

PUBLIC Page 62 of 74

Encoded Gateway API
Developer Guide

Response Codes
The following response codes are available as part of the transaction response.

Response codes provided are translations of the responses received from the underlying
gateway and/or card issuer once a transaction has processed. Not all gateways and card
issuers will support all response codes. Many gateways and card issuers provide only basic
response codes. Responses from the underlying gateway and/or card issuer without a
specific response code will be mapped to the closest generic response code.

Code Description

Validation

invalid_merchant_account The merchant account is incorrectly configured.
Contact Encoded Support to rectify.

invalid_card_number The card number supplied is invalid. In this
circumstance, the card number provided

invalid_expiry_date The expiry date supplied is invalid.

invalid_security_code The security code supplied is invalid.

requires_cardholder_name If no cardholder name has been provided as part
of the billing address for card schemes or
transaction types that mandate a cardholder name
being provided

insufficient_billing_address If insufficient billing address details have been
provided for card schemes or transaction types
that mandate certain address details being
provided

invalid_email The email supplied is invalid.

invalid_phone The phone number supplied is invalid.

invalid_amount The amount supplied is invalid.

invalid_currency The currency supplied is invalid.

invalid_source_transaction The source transaction referenced could not be
found.

expired_source_transaction The source transaction referenced has expired.

PUBLIC Page 63 of 74

Encoded Gateway API
Developer Guide

requires_source_transaction A transaction has been attempted that requires a
source transaction.

excessively_captured The transaction attempts to capture more than was
authorised

excessively_refunded The transaction attempts to refund more than was
captured.

cannot_refund Can not perform a refund on this type of
transaction.

cannot_void Can not perform a void on this type of transaction.

unsupported_currency Unsupported currency.

expired_card The card has expired.

requires_security_code The security code is required.

already_settled The transaction has already been settled and can
not be voided.

already_voided The transaction has been voided.

invalid_3ds The 3DS details provided were invalid.

requires_3ds The transaction was attempted without 3DSecure.

invalid_apple_pay_token Invalid Apple Pay token has been provided.

invalid_google_pay_token Invalid Google Pay token has been provided.

expired_google_pay_token An expired Google Pay token has been provided.

unsupported_source The source provided for the transaction is
unsupported for your account. This could be
because it is unsupported by the underlying
acquirer and/or gateway configured.

unsupported_recurrence The type of recurrence attempted is invalid for this
card

invalid_request Generic invalid request response.

Declined

declined Non-specific declined response.

declined_insufficient_funds Declined due to insufficient funds.

PUBLIC Page 64 of 74

Encoded Gateway API
Developer Guide

referred_retain_card The card should be retained.

blocked_blacklisted The card is on a blacklist.

excessively_authed Card authorisation attempt limit reached.

excessively_declined The card has reached a limit of declines for the
card scheme and should continue to be declined.

cancelled_continuous_authority The continuous authority for this card has been
cancelled.

incorrect_security_code The security code provided is incorrect.

incorrect_expiry_date The expiry date provided is incorrect.

blocked_fraud Blocked due to anti-fraud checks

referred Referral.

declined_3ds Declined by the 3DS2 authentication server prior to
the transaction being processed.

Errors

error_comms Error communicating with the issuer.

error_system Error in the system.

error_unknown An unknown error has occurred.

timeout The request has timed out.

no_response The issuer did not respond.

PUBLIC Page 65 of 74

Encoded Gateway API
Developer Guide

Test Cards
The following test cards can be used to perform test transactions against the SIT
environment.

You must use the specified Security Code to guarantee an approved transaction.

Card Number Scheme Type Expiry Security Code

4000000000000002 Visa Standard Any Valid 123

4462030000000000 Visa Prepaid Any Valid 444

5555555555554444 Mastercard Standard Any Valid 321

5597507644910558 Mastercard Prepaid Any Valid 888

340001916255521 American Express Standard Any Valid 1234

To force a declined transaction, please use Security Code 999.

PUBLIC Page 66 of 74

Encoded Gateway API
Developer Notes

Appendix 1 - Hosted Payment Fields Events
Events generated by the Hosted Payment Fields have the following fields available, which are detailed in the table below for each Event type:

● type
● target
● detail

Normal Events

Type Target Description Detail

initialisationStart DOM Document Dispatched when the initialisation of the Hosted
Payment Fields has started.

N/A

initialisationReady Payment Form
Element

Dispatched when the initialisation of the Hosted
Payment Fields has completed, and the fields are ready
for user entry. An implementer may wish to hide the
payment form from the user until this event has been
received.

N/A

fieldStatusChange Payment Field
Element

Dispatched when the validation status of a payment field
is updated by user input.

FieldStatusChangeObject

issuerArrived Payment Field
Element

Dispatched when Issuer information becomes available
for the payment card information entered by the user.
This will likely be in response to the first six digits of the
PAN being entered by the user.

IssuerObject

issuerCleared Payment Field Dispatched when Issuer information is no longer N/A

PUBLIC Page 67 of 74

Encoded Gateway API
Developer Notes

Element available. This will likely be in response to the PAN
being cleared or removed by the user.

paymentSessionFieldSync Payment Form
Element

Dispatched after a paymentSessionSyncRequest event
has been dispatched by the implementor. Indicates that
the field specified has been synced with the Payment
Session.

FieldSyncSuccessObject

paymentSessionSyncComplete Payment Form
Element

Dispatched after a paymentSessionSyncRequest event
has been dispatched by the implementor. Indicates that
the Payment Session sync process has completed. The
implementer should ensure that all payment fields are
still valid following this process.

SessionSyncCompleteObject

Error Events

Type Target Description Detail

configurationError DOM Document Dispatched after initialisationStarted and before
initialisationReady has been received. Indicates that a
configuration error has occurred, and the Hosted
Payment Fields have been unable to initialise.

Array of ConfigurationErrorObject

unrecognisedBrowser Payment Form
Element

Dispatched after initialisationStarted and before
initialisationReady has been received. Indicates that the
user is using a browser that is not recognised by Hosted
Payment Fields. The Hosted Payment Fields may still
work, but has not been tested nor is supported in the
current browser.

BrowserInfoObject

PUBLIC Page 68 of 74

Encoded Gateway API
Developer Notes

unsupportedBrowser Payment Field
Element

Dispatched after initialisationStarted and before
initialisationReady has been received. Indicates that the
user is using a browser that does not work with Hosted
Payment Fields.

BrowserInfoObject

paymentSessionError Payment Field
Element

Dispatched after initialisationStarted and before
initialisationReady has been received. Indicates that the
Payment Session for the ID provided during initialisation
could not be loaded.

ErrorObject

fieldInitialisationError Payment Field
Element

Dispatched after initialisationStarted and before
initialisationReady has been received. Indicates that one
of the payment fields could not be initialised.

N/A

fieldGetIssuerError Payment Field
Element

Dispatched when Issuer information was attempted to
be retrieved, but could not due to an error.

N/A

fieldUpdateError Payment Field
Element

Dispatched when a field could not be updated due to an
error.

N/A

paymentSessionSyncFailure Payment Field
Element

Dispatched FieldSyncFailureObject

PUBLIC Page 69 of 74

Encoded Gateway API
Developer Notes

Objects

FieldStatusChangeObject

Property Type Description

field String The name of the field that's status has changed.

state String The new state of the field. One of: valid, invalid, unset.

container DOM Element The DOM Element for the Div container of the field.

type String The type of event that triggered the status change. One of: blur, focus.

IssuerObject

Property Type Description

type String The type of card. One of: DEBIT, CREDIT, CHARGE_CARD

scheme String The scheme of the card: For example: VISA, MASTERCARD, AMERICAN_EXPRESS

brand String The brand of the card. Usually the issuing bank. For example: BARCLAYS, MONZO, HSBC

level String The level of the card. Used to identify standard, corporate, platinum, etc.

country String Two digit country code of the issuing country.

accepted Boolean Whether this type of card is accepted for the merchants configuration within the Gateway API.

PUBLIC Page 70 of 74

Encoded Gateway API
Developer Notes

infringement Array of
Strings

If not accepted, which of the properties has caused the card not to be accepted. For example: Type,
Scheme, Country, etc. Useful to be able to provide feedback to the user such as “Sorry, but we do not
accept credit cards.”

FieldSyncSuccessObject

Property Type Description

field FieldStatusObject The field status object.

FieldStatusObject

Property Type Description

type String The name of the field

state String The new state of the field. One of: valid, invalid, unset.

SessionSyncCompleteObject

Property Type Description

pan String The state of the PAN. One of: valid, invalid, unset.

expiry String The state of the expiry date. One of: valid, invalid, unset.

securityCode String The state of the security code. One of: valid, invalid, unset.

PUBLIC Page 71 of 74

Encoded Gateway API
Developer Notes

ConfigurationErrorObject

Property Type Description

id String The configuration option that was provided.

reason String The reason that the configuration option was invalid.

BrowserInfoObject

Property Type Description

browser BrowserObject The browser object

BrowserObject

Property Type Description

name String The name of the browser.

version BrowserVersionObject The browser version object

BrowserVersionObject

Property Type Description

current String The current version of the browser.

PUBLIC Page 72 of 74

Encoded Gateway API
Developer Notes

supported String The lowest supported version of the browser.

ErrorObject

Property Type Description

reason String A single description outlining the reason for the error.

FieldSyncFailureObject

Property Type Description

field FieldErrorStatusObject The field error status object.

FieldErrorStatusObject

Property Type Description

type String The name of the field.

reason String The reason for the error.

PUBLIC Page 73 of 74

Encoded Gateway API
Developer Notes

Version History

Version Status Date Author Approved Notes

0.1 Draft 2020-01-14 ABH Submitted for approval

1.0 Release 2020-01-15 ABH FHP Approved

1.1 Draft 2020-02-14 ABH Added Authorisation & Capture section. Clarified use of
Tokens.

1.1 Release 2020-02-19 ABH FHP Approved.

1.2 Draft 2020-02-20 ABH Added response codes.

1.2 Release 2020-02-20 ABH FHP Approved.

1.3 Draft 2020-06-24 ABH Added information about Customer object creation and using
custom attributes. Updated Token section with more
information about how they are tied to Customer objects.
Added page breaks between each section.

1.3 Release 2020-06-24 ABH FHP Approved.

1.4 Draft 2020-08-03 ABH Add 3DS2 information.

1.4 Release 2020-08-06 ABH FHP Approved.

1.5 Release 2021-05-10 ABH FHP Incorporate HPF into combined document

1.6 Release 2021-12-15 ABH FHP Update documentation on Hosted Payment Pages to make
the flow clearer.

1.7 Release 2022-01-12 ABH FHP Added notification call-back documentation. Removed
references to RAML and replaced with URL to online
documentation.

1.8 Draft 2022-03-02 ABH Added HPFv2.

2.0 Release 2023-03-16 ABH FHP Added Google Pay implementation details. Removed 3DSv1.
Added new result codes for Google Pay, and for declined due
to 3DS decline.

2.1 Release 2023-07-13 ABH FHP Added multiple 3DS2 challenge functionality.

3.0 Draft 2023-07-14 ABH ● Added Apple Pay implementation details.
● Updated 3DS2 to include messageVersion
● Added changelogs link and updated Service Desk URL.

3.0 Release 2023-07-17 ABH JC Approved.

3.1 Release 2023-08-01 ABH FHP ● Added action to Hosted Payment Pages.

3.2 Release 2023-10-03 ABH ABH ● Added section on Merchant Accounts, and explicit
Merchant Account Selection.

PUBLIC Page 74 of 74

